

Lecture Notes in Computer Science 4618
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Selim G. Akl Cristian S. Calude
Michael J. Dinneen Grzegorz Rozenberg
H. Todd Wareham (Eds.)

Unconventional
Computation

6th International Conference, UC 2007
Kingston, Canada, August 13-17, 2007
Proceedings

13

Volume Editors

Selim G. Akl
Queen’s University
School of Computing, Kingston, Ontario K7L 3N6, Canada
E-mail: akl@cs.queensu.ca

Cristian S. Calude
Michael J. Dinneen
University of Auckland
Department of Computer Science, Auckland, New Zealand
E-mail: {cristian, mjd}@cs.auckland.ac.nz

Grzegorz Rozenberg
University of Colorado
Department of Computer Science, Boulder, Co 80309-0347, USA
E-mail: rozenber@liacs.nl

H. Todd Wareham
Memorial University of Newfoundland
Department of Computer Science, St. John’s, NL, Canada
E-mail: harold@cs.mun.ca

Library of Congress Control Number: 2007932233

CR Subject Classification (1998): F.1, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73553-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73553-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12088782 06/3180 5 4 3 2 1 0

How Neural Computing Can Still Be

Unconventional After All These Years

Michael A. Arbib

USC Brain Project
University of Southern California
Los Angeles, CA USA 90089-2520

arbib@usc.edu

Abstract. Attempts to infer a technology from the computing style of
the brain have often focused on general learning styles, such as Hebbian
learning, supervised learning, and reinforcement learning. The present
talk will place such studies in a broader context based on the diver-
sity of structures in the mammalian brain – not only does the cerebral
cortex have many regions with their own distinctive characteristics, but
their architecture differs drastically from that of basal ganglia, cerebel-
lum, hippocampus, etc. We will discuss all this within a comparative,
evolutionary context. The talk will make the case for a brain-inspired
computing architecture which complements the bottom-up design of di-
verse styles of adaptive subsystem with a top-level design which melds a
variety of such subsystems to best match the capability of the integrated
system to the demands of a specific range of physical or informational
environments.

This talk will be a sequel to Arbib, M.A., 2003, Towards a neurally-
inspired computer architecture, Natural computing, 2:1-46, but the
exposition will be self-contained.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Preface

The Sixth International Conference on Unconventional Computation, UC 2007,
organized under the auspices of the EATCS by the Centre for Discrete Math-
ematics and Theoretical Computer Science (Auckland, New Zealand) and the
School of Computing, Queen’s University (Kingston, Ontario, Canada) was held
in Kingston during August 13–17, 2007. By coming to Kingston, the International
Conference on Unconventional Computation made its debut in the Americas.

The venue for the conference was the Four Points Hotel in downtown Kingston
on the shores of Lake Ontario. Kingston was founded in 1673 where Lake Ontario
runs into the St. Lawrence River, and served as Canada’s first capital. Renowned
as the fresh-water capital of North America, Kingston is a major port to cruise
the famous Thousand Islands. The ‘Limestone City’ has developed a thriving
artistic and entertainment life and hosts several festivals each year. Other points
of interest include Fort Henry, a 19th century British military fortress, as well
as 17 museums that showcase everything from woodworking to military and
technological advances.

The International Conference on Unconventional Computation (UC) series,
https://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/, is devoted to all
aspects of unconventional computation, theory as well as experiments and ap-
plications. Typical, but not exclusive, topics are: natural computing including
quantum, cellular, molecular, neural and evolutionary computing; chaos and dy-
namical system-based computing; and various proposals for computations that
go beyond the Turing model.

The first venue of the Unconventional Computation Conference (formerly
called Unconventional Models of Computation) was Auckland, New Zealand in
1998; subsequent sites of the conference were Brussels, Belgium in 2000, Kobe,
Japan in 2002, Seville, Spain in 2005, and York, UK in 2006.

The titles of volumes of previous UC conferences are the following:

1. C. S. Calude, J. Casti, and M. J. Dinneen (eds.). Unconventional Models of
Computation, Springer-Verlag, Singapore, 1998.

2. I. Antoniou, C. S. Calude, and M. J. Dinneen (eds.). Unconventional Models
of Computation, UMC’2K: Proceedings of the Second International Confer-
ence, Springer-Verlag, London, 2001.

3. C. S. Calude, M. J. Dinneen, and F. Peper (eds.). Unconventional Models
of Computation: Proceedings of the Third International Conference, UMC
2002, Lecture Notes in Computer Science no. 2509, Springer-Verlag, Heidel-
berg, 2002.

4. C. S. Calude, M. J. Dinneen, M. J. Pérez-Jiménez, Gh. Păun, and G. Rozen-
berg (eds.). Unconventional Computation: Proceedings of the 4th Interna-
tional Conference, UC 2005, Lecture Notes in Computer Science no. 3699,
Springer, Heidelberg, 2005.

VI Preface

5. C. S. Calude, M. J. Dinneen, Gh. Păun, G. Rozenberg, and S. Stepney
(eds.). Unconventional Computation: Proceedings of the 5th International
Conference, UC 2006, Lecture Notes in Computer Science no. 4135, Springer,
Heidelberg, 2006.

The Steering Committee of the International Conference on Unconventional
Computation series includes T. Bäck (Leiden, The Netherlands), C. S. Calude
(Auckland, New Zealand (Co-chair)), L. K. Grover (Murray Hill, NJ, USA),
J. van Leeuwen (Utrecht, The Netherlands), S. Lloyd (Cambridge, MA, USA),
Gh. Păun (Seville, Spain and Bucharest, Romania), T. Toffoli (Boston, MA,
USA), C. Torras (Barcelona, Spain), G. Rozenberg (Leiden, The Netherlands
and Boulder, Colorado, USA (Co-chair)), and A. Salomaa (Turku, Finland).

The four keynote speakers of the conference for 2007 were:

– Michael A. Arbib (U. Southern California, USA): A Top-Down Approach to
Brain-Inspired Computing Architectures

– Lila Kari (U. Western Ontario, Canada): Nanocomputing by Self-Assembly
– Roel Vertegaal (Queen’s University, Canada): Organic User Interfaces (Oui!):

Designing Computers in Any Way, Shape or Form
– Tal Mor (Technion–Israel Institute of Technology): Algorithmic Cooling:

Putting a New Spin on the Identification of Molecules

In addition, UC 2007 had two workshops, one on Language Theory in
Biocomputing organized by Michael Domaratzki (University of Manitoba) and
Kai Salomaa (Queen’s University), and another on Unconventional Computa-
tional Problems, organized by Marius Nagy and Naya Nagy (Queen’s Univer-
sity). Moreover, two tutorials were offered on Quantum Information Processing
by Gilles Brassard (Université de Montréal) and Wireless Ad Hoc and Sensor
Networks by Hossam Hassanein (Queen’s University).

The Programme Committee is grateful for the much-appreciated work done
by the paper reviewers for the conference. These experts were:

S. G. Akl
A. G. Barto
A. Brabazon
C. S. Calude
B. S. Cooper
J. F. Costan
M. J. Dinneen
G. Dreyfus

G. Franco
M. Hagiya
M. Hirvensalo
N. Jonoska
J. J. Kari
V. Manca
K. Morita
M. Nagy

N. Nagy
Gh. Păun
F. Peper
P. H. Potgieter
S. Stepney
K. Svozil
H. Tam
C. Teuscher

C. Torras
R. Twarock
H. Umeo
H. T. Wareham
J. Warren
M. Wilson
D. Woods

The Programme Committee consisting of S. G. Akl (Kingston, ON, Canada),
A. G. Barto (Amherst, MA, USA), A. Brabazon (Dublin, Ireland), C. S. Calude
(Auckland, New Zealand), B. S. Cooper (Leeds, UK), J. F. Costa (Lisbon, Por-
tugal), M. J. Dinneen (Auckland, New Zealand (Chair)), G. Dreyfus (Paris,
France), M. Hagiya (Tokyo, Japan), M. Hirvensalo (Turku, Finland), N. Jonoska
(Tampa, FL, USA), J. J. Kari (Turku, Finland), V. Manca (Verona, Italy),

Preface VII

Gh. Păun (Seville, Spain and Bucharest, Romania), F. Peper (Kobe, Japan),
P .H. Potgieter (Pretoria, South Africa), S. Stepney (York, UK), K. Svozil (Vi-
enna, Austria), C. Teuscher (Los Alamos, NM, USA), C. Torras (Barcelona,
Spain), R. Twarock (York, UK), H. Umeo (Osaka, Japan), H. T. Wareham
(St. John’s, NL, Canada (Secretary)), and D. Woods (Cork, Ireland) selected
17 papers (out of 27) to be presented as regular contributions.

We extend our thanks to all members of the local Conference Committee,
particularly to Selim G. Akl (Chair), Kamrul Islam, Marius Nagy, Yurai Núñez,
Kai Salomaa, and Henry Xiao of Queen’s University for their invaluable orga-
nizational work. We also thank Rhonda Chaytor (St. John’s, NL, Canada) for
providing additional assistance in preparing the proceedings.

We thank the many local sponsors of the conference.

– Faculty of Arts and Science, Queen’s University
– Fields Institute - Research in Mathematical Science
– School of Computing, Queen’s University
– Office of Research Services, Queen’s University
– Department of Biology, Queen’s University
– The Campus Bookstore, Queen’s University
– MITACS - Mathematics of Information Technology and Complex Systems
– IEEE, Kingston Section

It is a great pleasure to acknowledge the fine co-operation with the Lecture
Notes in Computer Science team of Springer for producing this volume in time
for the conference.

May 2007 Selim G. Akl
Christian S. Calude
Michael J. Dinneen

Grzegorz Rozenberg
Harold T. Wareham

Table of Contents

Invited Papers

How Neural Computing Can Still Be Unconventional After All These
Years . 1

Michael A. Arbib

Optimal Algorithmic Cooling of Spins . 2
Yuval Elias, José M. Fernandez, Tal Mor, and Yossi Weinstein

Nanocomputing by Self-assembly . 27
Lila Kari

Organic User Interfaces (Oui!): Designing Computers in Any Way
Shape or Form . 28

Roel Vertegaal

Regular Papers

Unconventional Models of Computation Through Non-standard Logic
Circuits . 29

Juan C. Agudelo and Walter Carnielli

Amoeba-Based Nonequilibrium Neurocomputer Utilizing Fluctuations
and Instability . 41

Masashi Aono and Masahiko Hara

Unconventional “Stateless” Turing–Like Machines . 55
Joshua J. Arulanandham

Polarizationless P Systems with Active Membranes Working in the
Minimally Parallel Mode . 62

Rudolf Freund, Gheorghe Păun, and Mario J. Pérez-Jiménez

On One Unconventional Framework for Computation 77
Lev Goldfarb

Computing Through Gene Assembly . 91
Tseren-Onolt Ishdorj and Ion Petre

Learning Vector Quantization Network for PAPR Reduction in
Orthogonal Frequency Division Multiplexing Systems 106

Seema Khalid, Syed Ismail Shah, and Jamil Ahmad

X Table of Contents

Binary Ant Colony Algorithm for Symbol Detection in a Spatial
Multiplexing System . 115

Adnan Khan, Sajid Bashir, Muhammad Naeem,
Syed Ismail Shah, and Asrar Sheikh

Quantum Authenticated Key Distribution . 127
Naya Nagy and Selim G. Akl

The Abstract Immune System Algorithm . 137
José Pacheco and José Félix Costa

Taming Non-compositionality Using New Binders . 150
Frédéric Prost

Using River Formation Dynamics to Design Heuristic Algorithms 163
Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio

Principles of Stochastic Local Search . 178
Uwe Schöning

Spatial and Temporal Resource Allocation for Adaptive Parallel
Genetic Algorithm . 188

K.Y. Szeto

Gravitational Topological Quantum Computation . 199
Mario Vélez and Juan Ospina

Computation in Sofic Quantum Dynamical Systems 214
Karoline Wiesner and James P. Crutchfield

Bond Computing Systems: A Biologically Inspired and High-Level
Dynamics Model for Pervasive Computing . 226

Linmin Yang, Zhe Dang, and Oscar H. Ibarra

Author Index . 243

Optimal Algorithmic Cooling of Spins

Yuval Elias1, José M. Fernandez2, Tal Mor3, and Yossi Weinstein4

1 Chemistry Department, Technion, Haifa, Israel
2 Département de génie informatique, École Polytechnique de Montréal, Montréal,

Québec, Canada
3 Computer Science Department, Technion, Haifa, Israel

4 Physics Department, Technion, Haifa, Israel

Abstract. Algorithmic Cooling (AC) of Spins is potentially the first
near-future application of quantum computing devices. Straightforward
quantum algorithms combined with novel entropy manipulations can re-
sult in a method to improve the identification of molecules.

We introduce here several new exhaustive cooling algorithms, such as
the Tribonacci and k-bonacci algorithms. In particular, we present the
“all-bonacci” algorithm, which appears to reach the maximal degree of
cooling obtainable by the optimal AC approach.

1 Introduction

Molecules are built from atoms, and the nucleus inside each atom has a prop-
erty called “spin”. The spin can be understood as the orientation of the nucleus,
and when put in a magnetic field, certain spins are binary, either up (ZERO)
or down (ONE). Several such bits (inside a single molecule) represent a binary
string, or a register. A macroscopic number of such registers/molecules can be
manipulated in parallel, as is done, for instance, in Magnetic Resonance Imag-
ing (MRI). The purposes of magnetic resonance methods include the identifica-
tion of molecules (e.g., proteins), material analysis, and imaging, for chemical
or biomedical applications. From the perspective of quantum computation, the
spectrometric device that typically monitors and manipulates these bits/spins
can be considered a simple “quantum computing” device.

Enhancing the sensitivity of such methods is a Holy Grail in the area of Nu-
clear Magnetic Resonance (NMR). A common approach to this problem, known
as “effective cooling”, has been to reduce the entropy of spins. A spin with lower
entropy is considered “cooler” and provides a better signal when used for identi-
fying molecules. To date, effective cooling methods have been plagued by various
limitations and feasibility problems.

“Algorithmic Cooling” [1,2,3] is a novel and unconventional effective-cooling
method that vastly reduces spin entropy. AC makes use of “data compression”
algorithms (that are run on the spins themselves) in combination with “ther-
malization”. Due to Shannon’s entropy bound (source-coding bound [4]), data
compression alone is highly limited in its ability to reduce entropy: the total
entropy of the spins in a molecule is preserved, and therefore cooling one spin is
done at the expense of heating others. Entropy reduction is boosted dramatically

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 2–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Algorithmic Cooling of Spins 3

by taking advantage of the phenomenon of thermalization, the natural return of
a spins entropy to its thermal equilibrium value where any information encoded
on the spin is erased. Our entropy manipulation steps are designed such that the
excess entropy is always placed on pre-selected spins, called “reset bits”, which
return very quickly to thermal equilibrium. Alternating data compression steps
with thermalization of the reset spins thus reduces the total entropy of the spins
in the system far beyond Shannon’s bound.The AC of short molecules is exper-
imentally feasible in conventional NMR labs; we, for example, recently cooled
spins of a three-bit quantum computer beyond Shannon’s entropy bound [5].

1.1 Spin-Temperature and NMR Sensitivity

For two-state systems (e.g. binary spins) there is a simple connection between
temperature, entropy, and probability. The difference in probability between the
two states is called the polarization bias. Consider a single spin particle in a con-
stant magnetic field. At equilibrium with a thermal heat-bath the probabilities
of this spin to be up or down (i.e., parallel or anti-parallel to the magnetic field)
are given by: p↑ = 1+ε0

2 , and p↓ = 1−ε0
2 . We refer to a spin as a bit, so that

|↑〉 ≡ |0〉 and |↓〉 ≡ |1〉, where |x〉 represents the spin-state x. The polarization
bias is given by ε0 = p↑ − p↓ = tanh

(
�γB

2KBT

)
, where B is the magnetic field,

γ is the particle-dependent gyromagnetic constant,1 KB is Boltzmann’s coeffi-
cient, and T is the thermal heat-bath temperature. Let ε = �γB

2KBT such that
ε0 = tanh ε. For high temperatures or small biases, higher powers of ε can be
neglected, so we approximate ε0 ≈ ε. Typical values of ε0 for nuclear spins (at
room temperature and a magnetic field of ∼ 10 Tesla) are 10−5 − 10−6.

A major challenge in the application of NMR techniques is to enhance sensi-
tivity by overcoming difficulties related to the Signal-to-Noise Ratio (SNR). Five
fundamental approaches were traditionally suggested for improving the SNR of
NMR. Three straightforward approaches - cooling the entire system, increasing
the magnetic field, and using a larger sample - are all expensive and limited in
applicability, for instance they are incompatible with live samples. Furthermore,
such approaches are often impractical due to sample or hardware limitations.
A fourth approach - repeated sampling - is very feasible and is often employed
in NMR experiments. However, an improvement of the SNR by a factor of M
requires M2 repetitions (each followed by a significant delay to allow relaxation),
making this approach time-consuming and overly costly. Furthermore, it is inad-
equate for samples which evolve over the averaged time-scale, for slow-relaxing
spins, or for non-Gaussian noise.

1.2 Effective Cooling of Spins

The fifth fundamental approach to the SNR problem consists of cooling the spins
without cooling the environment, an approach known as “effective cooling” of
1 This constant, γ, is thus responsible for the difference in the equilibrium polarization

bias of different spins [e.g., a hydrogen nucleus is about 4 times more polarized than
a 13C nucleus, but less polarized by three orders of magnitude than an electron spin].

4 Y. Elias et al.

the spins [6,7,8,9]. The effectively-cooled spins can be used for spectroscopy until
they relax to thermal equilibrium. The following calculations are done to leading
order in ε0 and are appropriate for ε0 � 1. A spin temperature at equilibrium
is T ∝ ε−1

0 . The single-spin Shannon entropy is H = 1 −
(
ε2
0/ ln 4

)
. A spin

temperature out of thermal equilibrium is similarly defined (see for instance [10]).
Therefore, increasing the polarization bias of a spin beyond its equilibrium value
is equivalent to cooling the spin (without cooling the system) and to decreasing
its entropy.

Several more recent approaches are based on the creation of very high polariza-
tions, for example dynamic nuclear polarization [11], para-hydrogen in two-spin
systems [12], and hyperpolarized xenon [13]. In addition, there are other spin-
cooling methods, based on general unitary transformations [7] and on (closely
related) data compression methods in closed systems [8].

One method for effective cooling of spins, reversible polarization compression
(RPC), is based on entropy manipulation techniques. RPC can be used to cool
some spins while heating others [7,8]. Contrary to conventional data compres-
sion,2 RPC techniques focus on the low-entropy spins, namely those that get
colder during the entropy manipulation process. RPC, also termed “molecular-
scale heat engine”, consists of reversible, in-place, lossless, adiabatic entropy
manipulations in a closed system [8]. Therefore, RPC is limited by the second
law of thermodynamics, which states that entropy in a closed system cannot
decrease, as is also stated by Shannon’s source coding theorem [4]. Consider the
total entropy of n uncorrelated spins with equal biases, H(n) ≈ n(1 − ε2

0/ ln 4).
This entropy could be compressed into m ≥ n(1 − ε2/ ln 4) high entropy spins,
leaving n−m extremely cold spins with entropy near zero. Due to preservation
of entropy, the number of extremely cold spins, n−m, cannot exceed nε2

0/ ln 4.
With a typical ε0 ∼ 10−5, extremely long molecules (∼ 1010 atoms) are required
in order to cool a single spin to a temperature near zero. If we use smaller
molecules, with n � 1010, and compress the entropy onto n − 1 fully-random
spins, the entropy of the remaining spin satisfies [2]

1− ε2
final ≥ n(1− ε2

0/ ln 4)− (n− 1) = 1− nε2
0/ ln 4. (1)

Thus, the polarization bias of the cooled spin is bounded by

εfinal ≤ ε0

√
n . (2)

When all operations are unitary, a stricter bound than imposed by entropy
conservation was derived by Sørensen [7]. In practice, due to experimental limita-
tions, such as the efficiency of the algorithm, relaxation times, and off-resonance
effects, the obtained cooling is significantly below the bound given in eq 2.

Another effective cooling method is known as polarization transfer (PT)[6,14].
This technique may be applied if at thermal equilibrium the spins to be used for

2 Compression of data [4] such as bits in a computer file, can be performed by con-
densation of entropy to a minimal number of high entropy bits, which are then used
as a compressed file.

Optimal Algorithmic Cooling of Spins 5

spectroscopy (the observed spins) are less polarized than nearby auxiliary spins.
In this case, PT from the auxiliary spins to the observed spins is equivalent
to cooling the observed spins (while heating the auxiliary spins). PT from one
spin to another is limited as a cooling technique, because the polarization bias
increase of the observed spin is bounded by the bias of the highly polarized spin.
PT is regularly used in NMR spectroscopy, among nuclear spins on the same
molecule [6]. As a simple example, consider the 3-bit molecule trichloroethylene
(TCE) shown in Fig. 1. The hydrogen nucleus is about four times more polarized

Fig. 1. A 3-bit computer: a TCE molecule labeled with two 13C. TCE has three spin
nuclei: two carbons and a hydrogen, which are named C1, C2 and H. The chlorines have
a very small signal and their coupling with the carbons is averaged out. Therefore, TCE
acts as a three-bit computer. The proton can be used as a reset spin because relative
to the carbons, its equilibrium bias is four times greater, and its thermalization time
is much shorter. Based on the theoretical ideas presented in [2], the hydrogen of TCE
was used to cool both carbons, decrease the total entropy of the molecule, and bypass
Shannon’s bound on cooling via RPC [5].

than each of the carbon nuclei; PT from a hydrogen can be used to cool a single
carbon by a factor of four. A different form of PT involves shifting entropy from
nuclear spins to electron spins. This technique is still under development [9,13],
but has significant potential in the future.

Unfortunately, the manipulation of many spins, say n > 100, is a very difficult
task, and the gain of

√
n in polarization is not substantial enough to justify

putting this technique into practice.
In its most general form, RPC is applied to spins with different initial polar-

ization biases, thus PT is a special case of RPC. We sometimes refer to both
techniques and their combination as reversible algorithmic cooling.

2 Algorithmic Cooling

Boykin, Mor, Roychowdhury, Vatan, and Vrijen (hereinafter referred to as BM-
RVV), coined the term Algorithmic Cooling (AC) for their novel effective-cooling
method [1].ACexpandsprevious effective-cooling techniquesby exploiting entropy
manipulations inopen systems. It combinesRPCwith relaxation (namely, thermal-
ization) of the hotter spins, in order to cool far beyond Shannon’s entropy bound.

6 Y. Elias et al.

AC employs slow-relaxing spins (which we call computation spins) and rapidly
relaxing spins (reset spins), to cool the system by pumping entropy to the
environment. Scheme 1 details the three basic operations of AC. The ratio
Rrelax−times, between the spin-lattice relaxation times of the computation spins
and the reset spins, must satisfy Rrelax−times
 1, to permit the application of
many cooling steps to the system.

In all the algorithms presented below, we assume that the relaxation time
of each computation spin is sufficiently large, so that the entire algorithm is
completed before the computation spins lose their polarization.

The practicable algorithmic cooling (PAC) suggested in [2] indicated a po-
tential for near-future application to NMR spectroscopy [3]. In particular, it
presented an algorithm (named PAC2) which uses any odd number of spins
such that one of them is a reset spin and the other 2L spins are computation
spins. PAC2 cools the spins such that the coldest one can (ideally) reach a bias
of (3/2)L. This proves an exponential advantage of AC over the best possible
reversible algorithmic cooling, as reversible cooling techniques (e.g., of refs [7]
and [8]) are limited to a bias improvement factor of

√
n. As PAC2 can be applied

to small L (and small n), it is potentially suitable for near future applications.

Scheme 1: AC is based on the combination of three distinct operations:

1. RPC. Reversible Polarization Compression steps redistribute the entropy in
the system so that some computation spins are cooled while other computa-
tion spins become hotter than the environment.

2. SWAP. Controlled interactions allow the hotter computation spins to adia-
batically lose their entropy to a set of reset spins, via PT from the reset spins
onto these specific computation spins.

3. WAIT. The reset spins rapidly thermalize, conveying their entropy to the
environment, while the computation spins remain colder, so that the entire
system is cooled.

2.1 Block-Wise Algorithmic Cooling

The original Algorithmic Cooling (BMRVV AC) [1] was designed to address the
scaling problem of NMR quantum computing. Thus, a significant number of spins
are cooled to a desired level and arranged in a consecutive block, such that the
entire block may be viewed as a register of cooled spins. The calculation of the
cooling degree attained by the algorithm was based on the law of large numbers,
yielding an exponential reduction in spin temperature. Relatively long molecules
were required due to this statistical nature, in order to ensure the cooling of 20,
50, or more spins (the algorithm was not analyzed for a small number of spins).
All computation spins were assumed to be arranged in a linear chain where each
computation spin (e.g., 13C) is attached to a reset spin (e.g., 1H). Reset and
computation spins are assumed to have the same bias ε0. BMRVV AC consists
of applying a recursive algorithm repeating (as many times as necessary) the
sequence of RPC, SWAP (with reset spins), and WAIT, as detailed in Scheme 1.
The relation between gates and NMR pulse sequences is discussed in ref [15].

Optimal Algorithmic Cooling of Spins 7

This cooling algorithm employed a simple form of RPC termed Basic Com-
pression Subroutine (BCS) [1]. The computation spins are ordered in pairs, and
the following operations are applied to each pair of computation spins X, Y .
Xj , Yj denote the state of the respective spin after stage j; X0, Y0 indicate the
initial state.

1. Controlled-NOT (CNOT), with spin Y as the control and spin X as target:
Y1 = Y0, X1 = X0 ⊕ Y0, where ⊕ denotes exclusive OR (namely, addition
modulo 2). This means that the target spin is flipped (NOT gate |↑〉 ↔ |↓〉)
if the control spin is |1〉 (i.e., |↓〉). Note that X1 = |0〉 ⇔ X0 = Y0, in which
case the bias of spin Y is doubled, namely the probability that Y1 = |0〉 is
very close to (1 + 2ε0)/2.

2. NOT gate on spin X1. So X2 = NOT (X1).
3. Controlled-SWAP (CSWAP), with spin X as a control: if X2 = |1〉 (Y was

cooled), transfer the improved state of Y (doubled bias) to a chosen location
by alternate SWAP and CSWAP gates.

Let us show that indeed in step 1 the bias of spin Y is doubled whenever X1 = |0〉.
Consider the truth table for the CNOT operation below:

input : X0Y0 output : X1Y1

0 0 → 0 0
0 1 → 1 1
1 0 → 1 0
1 1 → 0 1

The probability that both spins are initially |0〉 is p00 ≡ P (X0 = |0〉 , Y0 = |0〉) =
(1 + ε0)2/4. In general, pkl ≡ P (X0 = |k〉 , Y0 = |l〉) such that p01 = p10 =
(1+ε0)(1−ε0)/4, and p11 = (1−ε0)2/4. After CNOT, the conditional probability
P (Y1 = |0〉 |X1 = |0〉) is q00

q00+q01
= p00

p00+p11
, where qkl ≡ P (X1 = |k〉 , Y1 = |l〉)

and qkl is derived from pkl according to the truth table, so that q00 = p00, and
q01 = p11. In terms of ε0 this probability is

(1 + ε0)
2

(1 + ε0)
2 + (1− ε0)

2 ≈
1 + 2ε0

2
,

indicating that the bias of Y was indeed doubled in this case.
For further details regarding the basic compression subroutine and its appli-

cation to many pairs of spins (in a recursive manner) to reach a bias of 2jε0, we
refer the reader to ref [1].

2.2 Practicable Algorithmic Cooling (PAC)

An efficient and experimentally feasible AC technique was later presented,
termed “practicable algorithmic cooling (PAC)” [2]. Unlike the first algorithm,
the analysis of PAC does not rely on the law of large numbers, and no sta-
tistical requirement is invoked. PAC is thus a simple algorithm that may be
conveniently analyzed, and which is already applicable for molecules containing

8 Y. Elias et al.

very few spins. Therefore, PAC has already led to experimental implementations.
PAC algorithms use PT steps, reset steps, and 3-bit-compression (3B-Comp). As
already mentioned, one of the algorithms presented in [2], PAC2, cools the spins
such that the coldest one can (ideally) reach a bias of (3/2)L, while the number
of spins is only 2L + 1. PAC is simple, as all compressions are applied to three
spins, often with identical biases. The algorithms we present in the next section
are more efficient and lead to a better degree of cooling, but are also more com-
plicated. We believe that PAC is the best candidate for near future applications
of AC, such as improving the SNR of biomedical applications.

PAC algorithms [2] use a basic 3-spin RPC step termed 3-bit-compression
(3B-Comp):

Scheme 2: 3-BitCompression (3BComp)

1. CNOT, with spin B as a control and spin A as a target. Spin A is flipped if
B = |1〉.

2. NOT on spin A.
3. CSWAP with spin A as a control and spins B and C as targets. B and C

are swapped if A = |1〉.

Assume that the initial bias of the spins is ε0. The result of scheme 2 is that
spin C is cooled: if A = |1〉 after the first step (and A = |0〉 after the second
step), C is left unchanged (with its original bias ε0); if however, A = |0〉 after
the first step (hence A = |1〉 after the second step), spin B is cooled by a factor
of about 2 (see previous subsection), and following the CSWAP the new bias is
placed on C. Therefore, on average, C is cooled by a factor of 3/2. We do not
care about the biases of the other two spins, as they subsequently undergo a
reset operation.

In many realistic cases the polarization bias of the reset spins at thermal
equilibrium, ε0, is higher than the biases of the computation spins. Thus, an
initial PT from reset spins to computation spins (e.g., from hydrogen to carbon
or nitrogen), cools the computation spins to the 0th purification level, ε0.

As an alternative to Scheme 2, the 3B-Comp operation depicted in Scheme 3
is similar to the CNOT-CSWAP combination (Scheme 2) and cools spin C to
the same degree. This gate is known as the MAJORITY gate since the resulting
value of bit C indicates whether the majority of the bits had values of |0〉 or |1〉
prior to the operation of the gate.

Scheme 3: Single operation implementing 3B-Comp
Exchange the states |100〉 ↔ |011〉.
Leave the rest of the states unchanged.

If 3B-Comp is applied to three spins {C,B,A} which have identical biases, εC =
εB = εA = ε0, then spin C will acquire a new bias ε′C . This new bias is obtained
from the initial probability that spin C is |0〉 by adding the effect of exchanging
|100〉 ↔ |011〉:

Optimal Algorithmic Cooling of Spins 9

1 + ε′C
2

=
1 + εC

2
+ p|100〉 − p|011〉 (3)

=
1 + ε0

2
+

1− ε0

2
1 + ε0

2
1 + ε0

2
− 1 + ε0

2
1− ε0

2
1− ε0

2
=

1 + 3ε0−ε3
0

2

2
.

The resulting bias is

ε′C =
3ε0 − ε3

0

2
, (4)

and in the case where ε0 � 1

ε′C ≈ 3ε0

2
. (5)

We have reviewed two schemes for cooling spin C: one using CNOT and
CSWAP gates (see Scheme 2), and the other using the MAJORITY gate (see
Scheme 3). Spin C reaches the same final bias following both schemes. The other
spins may obtain different biases, but this is irrelevant for our purpose, as they
undergo a reset operation in the next stages of any cooling algorithm.

The simplest practicable cooling algorithm, termed Practicable Algorithmic
Cooling 1 (PAC1) [2], employs dedicated reset spins, which are not involved in
compression steps. PAC1 on three computation spins is shown in Fig. 2, where
each computation spin X has a neighboring reset spin, rX , with which it can
be swapped. The following examples illustrate cooling by PAC1. In order to
cool a single spin (say, spin C) to the first purification level, start with three
computation spins, CBA, and perform the sequence presented in Example 1. 3

Example 1: Cooling spin C to the 1st purification level by PAC1

1. PT((rC → C); (rB → B); (rA → A)), to initiate all spins.
2. 3B-Comp(C; B; A), increase the polarization of C.

A similar algorithm can also cool the entire molecule beyond Shannon’s entropy
bound. See the sequence presented in Example 2.

Example 2: Cooling spin C and bypassing Shannon’s entropy bound by PAC1

1. PT((rC → C); (rB → B); (rA → A)), to initiate all spins.
2. 3B-Comp(C; B; A), increase the polarization of C.
3. WAIT
4. PT((rB → B); (rA → A)), to reset spins A, B.

In order to cool one spin (say, spin E) to the second purification level (polar-
ization bias ε2), start with five computation spins (EDCBA) and perform the
sequence presented in Example 3.

For small biases, the polarization of spin E following the sequence in Exam-
ple 3 is ε2 ≈ (3/2)ε1 ≈ (3/2)2ε0.

3 This sequence may be implemented by the application of an appropriate sequence
of radiofrequency pulses.

10 Y. Elias et al.

Example 3: Cooling spin E in EDCBA to the 2nd purification level by PAC1

1. PT(E; D; C), to initiate spins EDC.
2. 3B-Comp(E; D; C), increase the polarization of E to ε1.
3. WAIT
4. PT(D; C; B), to initiate spins DCB.
5. 3B-Comp(D; C; B), increase the polarization of D to ε1.
6. WAIT
7. PT(C; B; A), to initiate spins CBA.
8. 3B-Comp(C; B; A), increase the polarization of C to ε1.
9. 3B-Comp(E; D; C), increase the polarization of E to ε2.

For molecules with more spins, a higher cooling level can be obtained.
This simple practicable cooling algorithm (PAC1) is easily generalized to cool

one spin to any purification level L. [2] The resultant bias will be very close
to (3/2)L, as long as this bias is much smaller than 1. For a final bias that
approaches 1 (close to a pure state), as required for conventional (non-ensemble)
quantum computing, a more precise calculation is required.

Consider an array of n computation spins, cncn−1 . . . c2c1, where each com-
putation spin, ci, is attached to a reset spin, ri (see Fig. 2 for the case of n = 3).
To cool ck, the spin at index k, to a purification level j ∈ 1 . . . L the procedure
Mj(k) was recursively defined as follows [2]: M0(k) is defined as a single PT
step from reset spin rk to computation spin ck to yield a polarization bias of
ε0 (the 0th purification level). The procedure M1(k) applies M0 to the three

Fig. 2. An abstract example of a molecule with three computation spins A, B and
C, attached to reset spins rA, rB , and rC , respectively. All spins have the same equi-
librium polarization bias, ε0 (a). The temperature after each step is illustrated by
color: gray - thermal equilibrium; white - colder than initial temperature; and black
- hotter than initial temperature. PAC uses 3-bit compression (3B-Comp), Polariza-
tion Transfer (PT) steps, and RESET steps: 1. 3B-Comp(C; B; A); the outcome of this
step is shown in (b). 2. PT(rB → B), PT(rC → C); the outcome is shown in (c). 3.
RESET(rB, rC); the outcome is shown in (d). The 3-bit-compression applied in the
first step operates on the three computation spins, increasing the bias of spin A by a
factor of 3/2, while heating the other two spins. The 3B-Comp step cools spin A, and
the following PT and RESET steps restore the initial biases of the other spins, thus
the entire system is cooled.

Optimal Algorithmic Cooling of Spins 11

spins followed by 3B-Comp on these spins, so that spin ck is cooled to the first
purification level. Similarly, M2(k) applies M1 three times to cool ck; ck−1; ck−2

to the first purification level, followed by 3B-Comp on these spins, so that spin
ck is cooled to the second purification level. We use the notation B(j−1)→j(k) to
represent the application of 3B-Comp to spins to purify spin ck from εj−1 to εj .
Then, the full algorithm has a simple recursive form, described in Algorithm 1.

Algorithm 1: Practicable algorithmic cooling 1 (PAC1):
For j ∈ {1, . . . , L}

Mj(k) = B{(j−1)−→j}(k)Mj−1(k − 2) Mj−1(k − 1) Mj−1(k) , (6)

applied from right to left (Mj−1(k) is applied first).

For instance,M1(3) = B{0→1}(3)M0(1) M0(2) M0(3), is 3B-Comp applied after
reset as described in Example 1.4 Clearly, M1(k) can be applied to any k ≥ 3,
M2(k) to k ≥ 5, and Mj(k) to k ≥ 2j + 1. Thus, to cool a single spin to a
purification level of L, 2L + 1 computation spins and an equal number of reset
spins are required. A single reset spin could be used for initializing all relevant
computation spins, at the expense of additional time steps.

Reset spins may also be used for compression, thus replacing the 3B-Comp
and PT steps above by a generalized RPC. The corresponding algorithm, termed
PAC2, has an improved space complexity relative to PAC1. We explicitly show
how this is achieved. Let ε0 be the polarization bias of the reset spin. In order
to cool a single spin to ε1, start with two computation spins, CB, and one reset
spin, A, and perform the sequence shown in Example 4 to cool spin C.

Example 4: Cooling spin C to the 1st purification level by PAC2

1. PT(A → B).
2. PT(B → C) to initiate spin C.
3. RESET(A) (by waiting).
4. PT(A → B) to initiate spin B.
5. RESET(A). If the thermalization time of the computation spins is suffi-

ciently large, there are now three spins with polarization bias ε0.
6. 3B-Comp to increase the polarization of spin C to ε1.

In order to cool one spin (say, spin E) to the second purification level (polariza-
tion bias ε2), start with 5 computation spins (EDCBA) and follow Example 5.

Example 5: Cooling spin E in EDCBA to the 2nd purification level by PAC2

1. PT sequentially to initiate spins EDC (RESET(A) after each PT).
2. 3B-Comp on spins EDC to increase the polarization of spin E to ε1.
3. PT sequentially to initiate spins DCB (RESET(A) after each PT).
4. 3B-Comp on spins DCB to increase the polarization of spin D to ε1.
5. PT sequentially to initiate spins CB (RESET(A) after each PT).
4 The procedure of cooling one spin to the second level (starting with five spins) is

written as M2(5) = B{1→2}(5)M1(3) M1(4) M1(5).

12 Y. Elias et al.

6. 3B-Comp on spins CBA to increase the polarization of spin C to ε1.
7. 3B-Comp on spins EDC to increase the polarization of spin E to ε2.

By repeated application of PAC2 in a recursive manner (as for PAC1), spin
systems can be cooled to very low temperatures. PAC1 uses dedicated reset spins,
while PAC2 also employs reset spins for compression. The simplest algorithmic
cooling can thus be obtained with as few as 3 spins, comprising 2 computation
spins and one reset spin.

The algorithms presented so far applied compression steps (3B-Comp) to
three identical biases (ε0); recall that this cools one spin to a new bias, ε′C ≈
(3/2)ε0. Now consider applying compression to three spins with different biases
(εC , εB, εA); spin C will acquire a new bias ε′C , which is a function of the three
initial biases [16,17]. This new bias is obtained from the initial probability that
spin C is |0〉 by adding the effect of the exchange |100〉 ↔ |011〉:

1 + ε′C
2

=
1 + εC

2
+ p100 − p011

=
1 + εC

2
+

1− εC

2
1 + εB

2
1 + εA

2
− 1 + εC

2
1− εB

2
1− εA

2

=
1 + εC+εB+εA−εCεBεA

2

2
. (7)

The resulting bias is

ε′C =
εC + εB + εA − εCεBεA

2
, (8)

and in the case where εC , εB, εA � 1,

ε′C ≈ εC + εB + εA

2
. (9)

3 Exhaustive Cooling Algorithms

The following examples and derivations are to leading order in the biases. This
is justified as long as all biases are much smaller than 1, including the final
biases. For example, with ε0 ∼ 10−5 (ε0 is in the order of magnitude of 10−5)
and n ≤ 13, the calculations are fine (see section 4 for details).

3.1 Exhaustive Cooling on Three Spins

Example 6: Fernandez [16]: F(C, B, A, m)
Repeat the following m times

1. 3B-Comp(C; B; A), to cool C.
2. RESET(B; A)

Consider an application of the primitive algorithm in Example 6 to three spins,
C, B, A, where A and B are reset spins with initial biases of εA = εB = ε0 and

Optimal Algorithmic Cooling of Spins 13

ε
(0)
C = 0 (the index over the bias of C denotes the iteration). After each WAIT

step, spins A and B are reset back to their equilibrium bias, ε0. As B and A play
roles of both reset and computation spins, the operation RESET in Example 6
simply means WAIT. From eq 9, after the first iteration

ε
(1)
C =

ε
(0)
C + εB + εA

2
=

0 + 2ε0

2
= ε0.

After the second iteration

ε
(2)
C =

ε
(1)
C + εB + εA

2
=

ε0 + 2ε0

2
=

3ε0

2
.

After the mth iteration

ε
(m)
C =

ε
(m−1)
C + 2ε0

2
= 2−mε

(0)
C + 2ε0

m∑
j=1

2−j = 0 +
(
1− 2−m

)
2ε0. (10)

The asymptotic bias (m →∞) may be extracted from

ε
(m)
C ≈ ε

(m)
C + 2ε0

2
, (11)

with the unique solution and bias configuration

ε
(m)
C = 2ε0 ⇒ {2ε0, ε0, ε0}. (12)

In order to achieve good asymptotics, one would like to reach εC = (2 − δ)ε0,
where δ is arbitrarily small. In this case the number of iterations required is given
by 21−m = δ =⇒ m = 1 + �log2(1/δ)�. For example, if δ = 10−5, 18 repetitions
are sufficient. Up to an accuracy of δ, the biases after the last reset are as in
eq 12.

3.2 The Fibonacci Algorithm

An algorithm based on 3B-Comp was recently devised [18], which produces a bias
configuration that asymptotically approaches the Fibonacci series. In particular,
when applied to n spins, the coldest spin attains the bias εfinal ≈ ε0Fn, where Fn

is the nth element of the series and ε0Fn � 1. Note that ε
(m)
C of eq 12 is ε0F3.

Also note that for 12 spins and ε0 ∼ 10−5, ε0F12 � 1, so the approximation is
useful for non-trivial spin systems. Compare the bias enhancement factor in this
case, F12 = 144, to PAC2 with 13 spins - (3/2)6 ≈ 11.

Example 7 expands Example 6 to four spins with initial biases εD = εC = 0
and εB = εA = ε0 (A, B are reset spins). We refer to the parameter m from
Example 6 as m3, the number of repetitions applied to three spins. We refer to
F from Example 6 as F2 for consistency with the rest of the section. Consider
the following example:

Example 7: F2(D, C, B, A, m4, m3)
Repeat the following m4 times:

14 Y. Elias et al.

1. 3B-Comp(D; C; B), places the new bias on spin D.
2. F2(C, B, A, m3).

After each iteration, i, the bias configuration is {ε(i)
D , εm3

C , ε0, ε0}. Running the
two steps in Example 7 exhaustively (m4, m3
 1) yields:

ε
(m3)
C ≈ 2ε0,

ε
(m4)
D ≈ εB + ε

(m3)
C + ε

(m4)
D

2
(13)

⇒ ε
(m4)
D = εB + ε

(m3)
C = 3ε0 = ε0F4.

This unique solution was obtained by following the logic of eqs 11 and 12.
We generalize this algorithm to n spins An, . . . , A1 in Algorithm 2.

Algorithm 2: Fibonacci F2(An, . . . , A1, mn, , m3)
Repeat the following mn times:

1. 3B-Comp(An; An−1; An−2).
2. F2(An−1, . . . , A1, mn−1, . . . , m3).

[with F2(A3, A2, A1, m3) defined by Example 6.]

Note that different values of mn−1, . . . , m3 may be applied at each repetition
of step 2 in Algorithm 2. This is a recursive algorithm; it calls itself with one
less spin. Running Algorithm 2 exhaustively (mn, mn−1, . . . , m3
 1) results,
similarly to eq 13, in

ε
(mn)
An

≈
ε
(mn)
An

+ εAn−1 + εAn−2

2
⇒ ε

(mn)
An

≈ εAn−1 + εAn−2. (14)

This formula yields the Fibonacci series {. . . , 8, 5, 3, 2, 1, 1}, therefore εAi →
ε0Fi. We next devise generalized algorithms which achieve better cooling. An
analysis of the time requirements of the Fibonacci cooling algorithm is provided
in [18].

3.3 The Tribonacci Algorithm

Consider 4-bit-compression (4B-Comp) which consists of an exchange between
the states |1000〉 and |0111〉 (the other states remain invariant similar to 3B-
Comp). Application of 4B-Comp to four spins D, C, B, A with corresponding
biases εD, εC , εB, εA � 1 results in a spin with the probability of the state |0〉
given by

1 + ε′D
2

=
1 + εD

2
+ p|1000〉 − p|0111〉 ≈

1 + εA+εB+εC+3εD

4

2
, (15)

following the logic of eqs 7 and 8, and finally

ε′D ≈ (εA + εB + εC + 3εD)/4. (16)

Optimal Algorithmic Cooling of Spins 15

Example 8 applies an algorithm based on 4B-Comp to 4 spins, with initial biases
εD = εC = 0 (A, B are reset spins). In every iteration of Example 8, running
step 2 exhaustively yields the following biases: εC = 2ε0, εB = εA = ε0. The
compression step (step 1) is then applied onto the configuration

Example 8: F3(D, C, B, A, m4, m3)
Repeat the following m4 times:

1. 4B-Comp(D;C;B;A).
2. F2(C, B, A, m3).

From eq 16, ε
(i+1)
D = (4ε0 + 3ε

(i)
D)/4. For sufficiently large m4 and m3 the algo-

rithm produces final polarizations of

ε
(m4)
D ≈ ε0 +

3
4
ε
(m4)
D =⇒ ε

(m4)
D ≈ 4ε0. (17)

For more than 4 spins, a similar 4B-Comp based algorithm may be defined.
Example 9 applies an algorithm based on 4B-Comp to 5 spins.

Example 9: F3(E, D, C, B, A, m5, m4, m3)
Repeat the following m5 times:

1. 4B-Comp(E; D; C; B).
2. F3(D, C, B, A, m4, m3).

Step 2 is run exhaustively in each iteration; the biases of DCBA after this step
are εD = 4ε0, εC = 2ε0, B = A = ε0. The 4B-Comp step is then applied to the
biases of spins (E, D, C, B). Similarly to eq 16, ε

(i+1)
E = (7ε0 + 3ε

(i)
E)/4. Hence,

for sufficiently large m5 and m4 the final bias of E is

ε
(m5)
E ≈ (7ε0 + 3ε

(m5)
E)/4 ⇒ ε

(m5)
E ≈ 7ε0. (18)

Algorithm 3 applies to an arbitrary number of spins n > 4. This is a recursive
algorithm, which calls itself with one less spin.

Algorithm 3: Tribonacci: F3(An, . . . , A1, mn, . . . , m3)
Repeat the following mn times:

1. 4B-Comp(An; An−1; An−2; An−3).
2. F3(An−1, . . . , A1, mn−1, . . . , m3).

[With F3(A4, A3, A2, A1, m4, m3) given by Example 8.]
The compression step, 4B-Comp, is applied to

ε
(i)
An

, εAn−1, εAn−2 , εAn−3,

and results in

ε
(i+1)
An

= (εAn−1 + εAn−2 + εAn−3 + 3ε
(i)
An

)/4. (19)

16 Y. Elias et al.

For sufficiently large mj, j = 3, . . . , n

ε
(mn)
An

≈ (εAn−1 + εAn−2 + εAn−3 + 3ε
(mn)
An

)/4

⇒ ε
(mn)
An

≈ εAn−1 + εAn−2 + εAn−3 . (20)

For εA3 = 2ε0, εA2 = εA1 = ε0, the resulting bias will be ε
(mn)
An

≈ ε0Tn, where
Tn is the nth Tribonacci number.5 As for the Fibonacci algorithm, we assume
ε0Tn � 1. The resulting series is {. . . , 24, 13, 7, 4, 2, 1, 1}.

3.4 The k-Bonacci Algorithm

A direct generalization of the Fibonacci and Tribonacci algorithms above is
achieved by the application of (k + 1)-bit-compression, or (k + 1)B-Comp. This
compression on k+1 spins involves the exchange of |100 · · ·000〉 and |011 · · ·111〉,
leaving the other states unchanged. When (k + 1)B-Comp is applied to k + 1
spins with biases {εAk+1, εAk

, . . . , εA2 , εA1}, where A1 and A2 are reset spins,
the probability that the leftmost spin is |0〉 becomes (similarly to eq 15)

1 + ε′k+1

2
=

1 + εk+1

2
+p100···000−p011···111 ≈

1 +
(2k−1−1)εAk+1+

∑k
j=1 εAj

2k−1

2
. (21)

Therefore, the bias of the leftmost spin becomes

ε′k+1 ≈
(2k−1 − 1)εAk+1 +

∑k
j=1 εAj

2k−1
. (22)

Example 10 applies an algorithm based on (k + 1)B-Comp to k + 1 spins. Fk

on k + 1 spins calls (recursively) Fk − 1 on k spins (recall that F3 on four spins
called F2 on three spins).

Example 10: Fk(Ak+1, . . . , A1, mk+1, . . . , m3)
repeat the following mk+1 times:

1. (k + 1)B-Comp(Ak+1, Ak, . . . , A2, A1)
2. Fk−1(Ak, . . . , A1, mk, . . . , m3)

If step 2 is run exhaustively at each iteration, the resulting biases are

εAk
= 2k−2ε0, εAk−1 = 2k−3ε0, . . . , εA3 = 2ε0, εA2 = εA1 = ε0.

The (k +1)B-Comp step is then applied to the biases ε
(i)
Ak+1

, 2k−2ε0, 2k−3ε0, . . . ,
2ε0, ε0, ε0. From eq 22,

ε
(i+1)
Ak+1

≈
(2k−1 − 1)ε(i)

Ak+1
+ 2k−1ε0

2k−1
.

5 The Tribonacci series (also known as the Fibonacci 3-step series) is generated by the
recursive formula ai = ai−1 + ai−2 + ai−3, where a3 = 2 and a2 = a1 = 1.

Optimal Algorithmic Cooling of Spins 17

Hence, for sufficiently large mj, j = 3, . . . , k + 1, the final bias of Ak+1 is

ε
(mk+1)
Ak+1

≈
(2k−1 − 1)ε(mk+1)

Ak+1
+ 2k−1ε0

2k−1
⇒ ε

(mk+1)
Ak+1

≈ 2k−1ε0. (23)

For more than k + 1 spins a similar (k + 1)B-Comp based algorithm may be
defined. Example 11 applies such an algorithm to k + 2 spins.

Example 11: Fk(Ak+2, . . . , A1, mk+2, . . . , m3)
Repeat the following steps mk+2 times:

1. (k + 1)B-Comp(Ak+2, Ak+1, . . . , A3, A2)
2. Fk(Ak+1, . . . , A1, mk+1, . . . , m3) [defined in Example 11.]

When step 2 is run exhaustively at each iteration, the resulting biases are

εAk+1 = 2k−1ε0, εAk
= 2k−2ε0, . . . , εA3 = 2ε0, εA2 = εA1 = ε0.

The (k + 1)B-Comp is applied to the biases. From Eq. 22,

ε
(i+1)
Ak+2

=
(2k−1 − 1)ε(i)

Ak+2
+ (2k − 1)ε0

2k−1
.

Hence, for sufficiently large mj , j = 3, . . . , k + 2, the final bias of Ak+2 is

ε
(mk+2)
Ak+2

≈
(2k−1 − 1)ε(mk+2)

Ak+2
+ (2k − 1)ε0

2k−1
⇒ ε

(mk+2)
Ak+2

≈ (2k − 1)ε0. (24)

Algorithm 4 generalizes Examples 10 and 11.

Algorithm 4: k-bonacci: Fk(An, . . . , A1, mn, . . . , m3)
Repeat the following mn times:

1. (k + 1)B-Comp(An, An−1, . . . , An−k).
2. Fk(An−1, . . . , A1, mn−1, . . . , m3).

[with Fk(Ak+1, . . . , A1, mk+1, . . . , m3) defined in Example 10.]

The algorithm is recursive; it calls itself with one less spin. The compression
step, (k + 1)B-Comp, is applied to

ε
(i)
An

, εAn−1 , . . . εAn−k
.

From Eq. 22, the compression results in

ε
(i+1)
An

≈
(2k−1 − 1)ε(i)

An
+
∑k

j=1 εAn−j

2k−1
. (25)

For sufficiently large mn, mn−1, etc.

ε
(mn)
An

≈
(2k−1 − 1)ε(mn)

An
+
∑k

j=1 εAn−j

2k−1

⇒ ε
(mn)
An

≈
k∑

j=1

εAn−j (26)

18 Y. Elias et al.

This set of biases corresponds to the k-step Fibonacci sequence which is gener-
ated by a recursive formula.

a1, a2 = 1, a� =

⎧⎨⎩
∑�−1

i=1 a�−i, 3 ≤ � ≤ k + 1∑k
i=1 a�−i � > k + 1

⎫⎬⎭ . (27)

Notice that for 3 ≤ � ≤ k + 1,

a� =
�−1∑
i=1

ai = 1 + 1 + 2 + 4 + · · · + 2�−4 + 2�−3 = 2�−2. (28)

The algorithm uses �-bit-compression (�-B-Comp) gates, where 3 ≤ � ≤ k + 1.

3.5 The All-Bonacci Algorithm

In Example 11 (Fk applied to k + 1 spins), the resulting biases of the com-
putation spins, 2k−1ε0, 2k−2ε0, . . . , 2ε0, ε0, were proportional to the exponential
series {2k−1, 2k−2, . . . , 4, 2, 1}. For example, F2 on 3 spins results in {2ε0, ε0, ε0}
(see Example 6), and F3 on 4 spins results in {4ε0, 2ε0, ε0, ε0} (see Example 8).
This coincides with the k-step Fibonacci sequence, where a� = 2�−2, for a1 = 1
and � = 2, 3, ..., k+1 (see eq 28). This property leads to cooling of n+1 spins by
a special case of k-bonacci (Algorithm 5), where k-bonacci is applied to k = n−1
spins.

Algorithm 5: All-bonacci: FAll(An, . . . , A1, mn . . . , m3)
Apply Fn−1(An, . . . , A1, mn, . . . , m3).

The final biases after all-bonacci are εAi → ε02i−2 for i > 1. The resulting series
is {. . . , 16, 8, 4, 2, 1, 1}.

The all-bonacci algorithm potentially constitutes an optimal AC scheme, as
explained in section 4.

3.6 Density Matrices of the Cooled Spin Systems

For a spin system in a completely mixed state, the density matrix of each
spin is:

1
2
I =

1
2

(
1

1

)
. (29)

The density matrix of the entire system, which is diagonal, is given by the tensor
product ρCM = 1

23 I ⊗ I ⊗ I, where

Diag(ρCM) = 2−3(1, 1, 1, 1, 1, 1, 1, 1). (30)

For three spins in a thermal state, the density matrix of each spin is

ρ
(1)
T =

1
2

(
1 + ε0

1 − ε0

)
. (31)

Optimal Algorithmic Cooling of Spins 19

and the density matrix of the entire system is given by the tensor product ρT =
ρ
(1)
T ⊗ ρ

(1)
T ⊗ ρ

(1)
T . This matrix is also diagonal. We write the diagonal elements

to leading order in ε0:

Diag(ρT) = 2−3(1+3ε0, 1+ε0, 1+ε0, 1+ε0, 1−ε0, 1−ε0, 1−ε0, 1−3ε0). (32)

Consider now the density matrix after shifting and scaling, ρ′ = 2n(ρ−2−nI)/ε0.
For any Diag(ρ) = (p1, p2, p3, . . . , pn) the resulting diagonal is Diag(ρ′) =
(p′1, p

′
2, p

′
3, . . . , p

′
n) with p′j = 2n(pj − 2−n)/ε0. The diagonal of a shifted and

scaled (S&S) matrix for a completely mixed state (eq 30) is

Diag(ρ′CM) = (0, 0, 0, 0, 0, 0, 0, 0), (33)

and for a thermal state (eq. 32)

Diag(ρ′T) = (3, 1, 1, 1,−1,−1,−1,−3). (34)

In the following discussion we assume that any element, p, satisfies p′ε0 � 1.
When applied to a diagonal matrix with elements of the form p = 1

2n (1± p′iε0),
this transformation yields the corresponding S&S elements, ± p′i.

Consider now the application of the Fibonacci to three spins. The resultant
bias configuration, {2ε0, ε0, ε0} (eq 12) is associated with the density matrix

ρ
(3)
Fib =

1
23

(
1 + 2ε0

1− 2ε0

)
⊗
(

1 + ε0

1− ε0

)
⊗
(

1 + ε0

1− ε0

)
, (35)

with a corresponding diagonal, to leading order in ε0,

Diag
(
ρ
(3)
Fib

)
= 2−3 (1 + 4ε0, 1 + 2ε0, 1 + 2ε0, 1, 1, 1− 2ε0, 1− 2ε0, 1− 4ε0) .

(36)
The S&S form of this diagonal is

Diag
(
ρ′

(3)
Fib

)
= (4, 2, 2, 0, 0,−2,−2,−4) . (37)

Similarly, the S&S diagonal for Tribonacci on four spins is

Diag
(
ρ′

(4)
Trib

)
= (8, 6, 6, 4, 4, 2, 2, 0, 0,−2,−2,−4,−4,−6,−6,−8) . (38)

and the S&S form of the diagonal for all-bonacci on n spins is

Diag
(
ρ′

(n)
allb

)
=
[
2n−1, (2n−1 − 2), (2n−1 − 2), . . . , 2, 2, 0, 0, . . . ,−2n − 1

]
. (39)

which are good approximations as long as 2nε0 � 1.

Partner Pairing Algorithm. Recently a cooling algorithm was devised that
achieves a superior bias than previous AC algorithms. [18,19] This algorithm,
termed the Partner Pairing Algorithm (PPA), was shown to produce the highest

20 Y. Elias et al.

possible bias for an arbitrary number of spins after any number of reset steps.
Let us assume that the reset spin is the least significant bit (the rightmost spin in
the tensor-product density matrix). The PPA on n spins is given in Algorithm 6.

Algorithm 6: Partner Pairing Algorithm (PPA)
Repeat the following, until cooling arbitrarily close to the limit.

1. RESET – applied only to a single reset spin.
2. SORT – A permutation that sorts the 2n diagonal elements of the density

matrix by decreasing value, such that p0 is the largest, and p2n−1 is the
smallest.

Written in terms of ε, the reset step has the effect of changing the traced density
matrix of the reset spin to

ρε =
1

eε + e−ε

(
eε

e−ε

)
=

1
2

(
1 + ε0

1− ε0

)
, (40)

for any previous state. From eq 40 it is clear that ε0 = tanh ε as stated in the
introduction. For a single spin in any diagonal mixed state:(

p0

p1

)
RESET−−−−−→ p0 + p1

2

(
1 + ε0

1− ε0

)
=

1
2

(
1 + ε0

1− ε0

)
. (41)

For two spins in any diagonal state a reset of the least significant bit results in⎛⎜⎜⎝
p0

p1

p2

p3

⎞⎟⎟⎠ RESET−−−−−→

p0 + p1

2

⎛⎜⎜⎝
p0+p1

2 (1 + ε0)
p0+p1

2 (1− ε0)
p2+p3

2 (1 + ε0)
p2+p3

2 (1− ε0)

⎞⎟⎟⎠ . (42)

Algorithm 6 may be highly inefficient in terms of logic gates. Each SORT could
require an exponential number of gates. Furthermore, even calculation of the
required gates might be exponentially hard.

We refer only to diagonal matrices and the diagonal elements of the matrices
(applications of the gates considered here to a diagonal density matrix do not
produce off-diagonal elements). For a many-spin system, RESET of the reset
spin, transforms the diagonal of any diagonal density matrix, ρ, as follows:

Diag(ρ) = (p0, p1, p2, p3, . . .) → (43)[
p0 + p1

2
(1 + ε0),

p0 + p1

2
(1− ε0),

p2 + p3

2
(1 + ε0),

p2 + p3

2
(1 − ε0), . . .

]
,

as the density matrix of each pair, pi and pi+1 (for even i) is transformed by
the RESET step as described by eq 40 above. We use the definition of S&S
probabilities, p′ = 2n(p− 2−n)/ε0. The resulting S&S diagonal is

Optimal Algorithmic Cooling of Spins 21

Diag(ρ′) =[
2n

ε0

(
p0 + p1

2
+ (1 + ε0)− 2−n

)
, . . .

]
=[

2n

ε0

(
p0 + p1

2
− 2−n

)
+ 2n p0 + p1

2
, . . .

]
=[

p′1 + p′2
2

+ 1,
p′0 + p′1

2
+ 2n p0 + p1

2
,
p′0 + p′1

2
− 2n p0 + p1

2
, . . .

]
, (44)

where the second element is shown in the final expression. We now use p =
2−n(ε0p

′ + 1), to obtain

2n p0 + p1

2
= 2n 2−n(ε0p

′
0 + 1) + 2−n(ε0p

′
1 + 1)

2
(45)

=
ε0(p′0 + p′1) + 2

2
= 1 + ε0

p′0 + p′1
2

. (46)

Ref [18] provides an analysis of the PPA. We continue, as in the previous sub-
section, to analyze the case of p′ε0 � 1, which is of practical interest. In this
case 1+ ε0

p′
0+p′

1
2 ≈ 1. Hence, the effect of a RESET step on the S&S diagonal is:

Diag(ρ′) = (p′0, p
′
1, p

′
2, p

′
3, . . .) → (47)[

p′0 + p′1
2

+ 1,
p′0 + p′1

2
− 1,

p′2 + p′3
2

+ 1,
p′2 + p′3

2
− 1, . . .

]
Consider now three spins, such that the one at the right is a reset spin. Following
ref [18], we initially apply the PPA to three spins which are initially at the
completely mixed state. The first step of the PPA, RESET (eq 47), is applied
to the diagonal of the completely mixed state (eq 33), to yield

Diag(ρ′CMS) → Diag(ρ′RESET) = (1,−1, 1,−1, 1,−1, 1,−1). (48)

This diagonal corresponds to the density matrix

ρRESET =
1
23
I ⊗ I ⊗

(
1 + ε0

1− ε0

)
, (49)

namely to the bias configuration {0, 0, ε0}. The next PPA step, SORT, sorts the
diagonal elements in decreasing order:

Diag(ρ′SORT) = (1, 1, 1, 1,−1,−1,−1,−1), (50)

that arises from the density matrix

ρSORT =
1
23

(
1 + ε0

1− ε0

)
⊗ I ⊗ I, (51)

which corresponds to the biases {ε0, 0, 0}. The bias was thus transferred to the
leftmost spin. In the course of repeated alternation between the two steps of the
PPA, this diagonal will further evolve as detailed in Example 12.

22 Y. Elias et al.

The rightmost column of Example 12 lists the resulting bias configurations.
Notice that after the 5th step the biases are identical. Also notice that in the 6th

and 10th steps the states |100〉 and |011〉 are exchanged (3B-Comp); after both
these steps, the state of the system cannot be written as a tensor product.6 Also
notice that after step 13, the PPA applies a SORT which will also switch between
these two states. The PPA, applied to the bias configuration {tε0, ε0, ε0}, where
1 ≤ t ≤ 2 is simply an exchange |100〉 ↔ |011〉 . This is evident from the diagonal

Diag(ρ′) = (t + 2, t, t, t− 2,−t + 2,−t,−t,−t− 2). (52)

Thus, the PPA on three spins is identical to the Fibonacci algorithm applied to
three spins (see Example 6). This analogy may be taken further to some extent.
When the PPA is applied onto four spins, the outcome, but not the steps, is
identical to the result obtained by Tribonacci algorithm (see Example 8). These
identical results may be generalized to the PPA and all-bonacci applied onto
n ≥ 3 spins.

Example 12: Application of PPA to 3 spins

Diag(ρ′) = (0, 0, 0, 0, 0, 0, 0, 0) {0, 0, 0}
step 1 RESET−−−−−→ (1,−1, 1,−1, 1,−1, 1,−1) {0, 0, ε0}
step 2 SORT−−−−→ (1, 1, 1, 1,−1,−1,−1,−1) {ε0, 0, 0}
step 3 RESET−−−−−→ (2, 0, 2, 0, 0,−2, 0,−2) {ε0, 0, ε0}
step 4 SORT−−−−→ (2, 2, 0, 0, 0, 0,−2,−2) {ε0, ε0, 0}
step 5 RESET−−−−−→ (3, 1, 1,−1, 1,−1,−1,−3) {ε0, ε0, ε0}
step 6 SORT−−−−→ (3, 1, 1, 1,−1,−1,−1,−3) N. A.

step 7 RESET−−−−−→ (3, 1, 2, 0, 0,−2,−1,−3) { 3ε0
2 , ε0

2 , ε0}
step 8 SORT−−−−→ (3, 2, 1, 0, 0,−1,−2,−3) { 3ε0

2 , ε0,
ε0
2 }

step 9 RESET−−−−−→ 1
2 (7, 3, 3,−1, 1,−3,−3,−7) { 3ε0

2 , ε0, ε0}
step 10 SORT−−−−→ 1

2 (7, 3, 3, 1,−1,−3,−3,−7) N.A.

step 11 RESET−−−−−→ 1
2 (7, 3, 4, 0, 0,−4,−3,−7) { 7ε0

4 , 3ε0
4 , ε0}

step 12 SORT−−−−→ 1
2 (7, 4, 3, 0, 0,−3,−4,−7) { 7ε0

4 , ε0,
3ε0
4 }

step 13 RESET−−−−−→ 1
4 (15, 7, 7,−1, 1,−7,−7,−15) { 7ε0

4 , ε0, ε0}

4 Optimal Algorithmic Cooling

4.1 Lower Limits of the PPA and All-Bonacci

Consider an application of the PPA to a three-spin system at a state with the
S&S diagonal of eq 37. This diagonal is both sorted and invariant to RESET,

6 This is due to classical correlations (not involving entanglement) between the spins;
an individual bias may still be associated with each spin by tracing out the others,
but such a bias cannot be interpreted as temperature.

Optimal Algorithmic Cooling of Spins 23

hence it is invariant to the PPA. Eq 37 corresponds to the bias configura-
tion {2ε0, ε0, ε0} which is the limit of the Fibonacci algorithm presented above
(eq 12). This configuration is the “lower” limit of the PPA with three spins in
the following sense: any “hotter configuration” is not invariant and continues to
cool down during exhaustive PPA until reaching or bypassing this configuration.
For four spins the diagonal of Eq 38 is invariant to the PPA for the same reasons.
This diagonal corresponds to the bias configuration {4ε0, 2ε0, ε0, ε0}, which is
the limit of the Tribonacci algorithm (or the all-bonacci) applied to four spins.
Any “hotter configuration” is not invariant and cools further during exhaustive
PPA, until it reaches (or bypasses) this configuration.

Now, we follow the approximation of very small biases for n spins, where
2nε0 � 1. The diagonal in eq 39 is invariant to the PPA. This diagonal corre-
sponds to the bias configuration

{2n−2ε0, 2n−3ε0, 2n−4ε0, . . . , 2ε0, ε0, ε0}, (53)

which is the limit of the all-bonacci algorithm. As before, any “hotter configura-
tion” is not invariant and cools further. It is thus proven that the PPA reaches
at least the same biases as all-bonacci.

We conclude that under the assumption 2nε0 � 1, the n-spin system can be
cooled to the bias configuration shown in eq 53. When this assumption is not
valid (e.g., for larger n with the same ε0), pure qubits can be extracted; see
theorem 2 in [19] (theorem 3 in ref [18]).

Yet, the PPA potentially yields “colder configurations”. We obtained numer-
ical results for small spin systems which indicate that the limits of the PPA and
all-bonacci are identical. Still, since the PPA may provide better cooling, it is
important to put an “upper” limit on its cooling capacity.

4.2 Upper Limits on Algorithmic Cooling

Theoretical limits for cooling with algorithmic cooling devices have recently been
established [18,19]. For any number of reset steps, the PPA has been shown to be
optimal in terms of entropy extraction (see ref [19] and more details in section 1
of ref [18]). An upper bound on the degree of cooling attainable by the PPA
is therefore also an upper bound of any AC algorithm. The following theorem
regards a bound on AC which is the loose bound of ref [18].

Theorem 1. No algorithmic cooling method can increase the probability of any
basis state to above7 min{2−ne2nε, 1}, where the initial configuration is the com-
pletely mixed state.8 This includes the idealization where an unbounded number
of reset and logic steps can be applied without error or decoherence.

The proof of Theorem 1 involves applying the PPA and showing that the prob-
ability of any state never exceeds 2−ne2nε.

7 A tighter bound, p0 ≤ 2−ne2n−1ε, was claimed by theorem 1 of ref [18].
8 It is assumed that the computation spins are initialized by the polarization of the

reset spins.

24 Y. Elias et al.

5 Algorithmic Cooling and NMR Quantum Computing

We have been using the language of classical bits, however spins are quantum
systems; thus, spin particles (two-level systems) should be regarded as quantum
bits (qubits). A molecule with n spin nuclei can represent an n-qubit comput-
ing device. The quantum computing device in this case is actually an ensemble
of many such molecules. In ensemble NMR quantum computing [20,21,22] each
computer is represented by a single molecule, such as the TCE molecule of Fig. 1,
and the qubits of the computer are represented by nuclear spins. The macroscopic
number of identical molecules available in a bulk system is equivalent to many
processing units which perform the same computation in parallel. The molecular
ensemble is placed in a constant magnetic field, so that a small majority of the
spins are aligned with the direction of the field. To perform a desired computa-
tion, the same sequence of external pulses is applied to all molecules/computers.
Any quantum logic-gate can be implemented in NMR by a sequence of radio-
frequency pulses and intermittent delay periods during which spins evolve under
coupling [23]. Finally, the state of a particular qubit is measured by summing
over all computers/molecules. The process of AC constitutes a simple quantum
computing algorithm. However, unlike other quantum algorithms, the use of
quantum logic gates does not produce any computational speed-up, but instead
generates colder spins. This constitutes the first near-future application of quan-
tum computing devices. AC may also have an important long-term application;
it may enable quantum computing devices capable of running important quan-
tum algorithms, such as the factorization of large numbers [24]. NMR quantum
computers [20,21,22] are currently the most successful quantum computing de-
vices (see for instance ref [25]), but are known to suffer from severe scalability
problems [1,26,27]. AC can be used for building scalable NMR quantum com-
puters of 20-50 quantum bits if electron spins are used for the PT and RESET
steps. PT with electron spins [9,11] can enhance the polarization by three or
four orders of magnitude. Unfortunately, severe technical difficulties have thus
far impeded common practice of this technique. An example of such a difficulty
is the need to master two very different electromagnetic frequencies within a
single machine. However, in case such PT steps come into practice (using ma-
chinery that allows conventional NMR techniques as well), AC could be applied
with much better parameters; First, ε0 could be increased to around 0.01-0.1.
Second, the ratio Rrelax−times could reach 103−104. With these figures, scalable
quantum computers of 20-50 qubits may become feasible.

6 Discussion

Algorithmic Cooling (AC) harnesses the environment to enhance spin polariza-
tion much beyond the limits of reversible polarization compression (RPC). Both
cooling methods may be regarded as a set of logic gates, such as NOT or SWAP,
which are applied onto the spins. Polarization transfer (PT), for instance, a form
of RPC, may be obtained by a SWAP gate. AC algorithms are composed of two
types of steps: reversible AC steps (RPC) applied to two spins or more, and reset

Optimal Algorithmic Cooling of Spins 25

steps, in which entropy is shifted to the environment through reset spins. These
reset spins thermalize much faster than computation spins (which are cooled),
allowing a form of a molecular heat pump. A prerequisite for AC is thus the
mutual existence (on the same molecule) of two types of spins with a substantial
relaxation times ratio (of at least an order of magnitude). While this demand
limits the applicability of AC, it is often met in practice (e.g., by 1H vs 13C in
certain organic molecules) and may be induced by the addition of a paramag-
netic reagent. The attractive possibility of using rapidly-thermalizing electron
spins as reset bits is gradually becoming a relevant option for the far future.

We have surveyed previous cooling algorithms and suggested novel algorithms
for exhaustive AC: the Tribonacci, the k-bonacci, and the all-bonacci algorithms.
We conjectured the optimality of all-bonacci, as it appears to yield the same
cooling level as the PPA of refs [18,19]. Improving the SNR of NMR by AC
potentially constitutes the first short-term application of quantum computing
devices. AC is further accommodated in quantum computing schemes (NMR-
based or others) relating to the more distant future [1,28,29,30].

Acknowledgements

Y.E., T.M., and Y.W. thank the Israeli Ministry of Defense, the Promotion of
Research at the Technion, and the Institute for Future Defense Research for
supporting this research.

References

1. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cool-
ing and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99(6), 3388–3393
(2002)

2. Fernandez, J.M., Lloyd, S., Mor, T., Rowchoudury, V.: Algorithmic cooling of spins:
A practicable method for increasing polarisation. Int. J. Quant. Inf. 2(4), 461–467
(2004)

3. Mor, T., Roychowdhury, V., Lloyd, S., Fernandez, J.M., Weinstein, Y.: US patent
No. 6,873,154 (2005)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(1991)

5. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T., Wein-
stein, Y., Xiao, L.: Experimental heat-bath cooling of spins. Proc. Natl. Acad. Sci.
USA (submitted) (also in arXiv:quant-ph/0511156)

6. Morris, G.A., Freeman, R.: Enhancement of nuclear magnetic resonance signals by
polarization transfer. J. Am. Chem. Soc. 101, 760–762 (1979)

7. Sørensen, O.W.: Polarization transfer experiments in high-resolution NMR spec-
troscopy. Prog. Nucl. Mag. Res. Spec. 21, 503–569 (1989)

8. Schulman, L.J., Vazirani, U.V.: Scalable NMR quantum computation. In: ACM
Symposium on the Theory of Computing (STOC): Proceedings, pp. 322–329. ACM
Press, New York (1999)

9. Farrar, C.T., Hall, D.A., Gerfen, G.J., Inati, S.J., Griffin, R.G.: Mechanism of
dynamic nuclear polarization in high magnetic fields. J. Chem. Phys. 114, 4922–
4933 (2001)

26 Y. Elias et al.

10. Slichter, C.P.: Principles of Magnetic Resonance, 3rd edn. Springer, Heidelberg
(1990)

11. Ardenkjær-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche,
M.H., Servin, R., Thaning, M., Golman, K.: Increase in signal-to-noise ratio of
> 10, 000 times in liquid-state NMR. Proc. Natl. Acad. Sci. 100, 10158–10163
(2003)

12. Anwar, M., Blazina, D., Carteret, H., Duckett, S.B., Halstead, T., Jones, J.A.,
Kozak, C., Taylor, R.: Preparing high purity initial states for nuclear magnetic
resonance quantum computing. Phys. Rev. Lett. 93 (2004) (also in arXiv:quant-
ph/0312014)

13. Oros, A.M., Shah, N.J.: Hyperpolarized xenon in NMR and MRI. Phys. Med.
Biol. 49, R105–R153 (2004)

14. Emsley, L., Pines, A.: Lectures on pulsed NMR. In: Nuclear Magnetic Double
Resonance, Proceedings of the CXXIII School of Physics Enrico Fermi, 2nd edn.
p. 216. World Scientific, Amsterdam (1993)

15. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Algorithmic cooling of spins.
Isr. J. Chem. (to be published on 2007)

16. Fernandez, J.M.: De computatione quantica. PhD thesis, University of Montreal,
Canada (2003)

17. Weinstein, Y.: Quantum computation and algorithmic cooling by nuclear mag-
netic resonance. Master’s thesis, Physics Department, Technion - Israel Institute
of Technology (August 2003)

18. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic
cooling. SIAM J. Comp. 36, 1729–1747 (2007)

19. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic
cooling. Phys. Rev. Lett. 94, 120501 (2005)

20. Cory, D.G., Fahmy, A.F., Havel, T.F.: Nuclear magnetic resonance spectroscopy:
an experimentally accessible paradigm for quantum computing. In: Proceedings of
PhysComp96, pp. 87–91 (1996)

21. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by nuclear
magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. 1634–1639 (1997)

22. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Sci-
ence 275, 350–356 (1997)

23. Price, M.D., Havel, T.F., Cory, D.G.: Multiqubit logic gates in NMR quantum
computing. New Journal of Physics 2, 10.1–10.9 (2000)

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

25. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H.,
Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature 414, 883–887 (2001)

26. Warren, W.S.: The usefulness of NMR quantum computing. Science 277, 1688–1690
(1997)

27. DiVincenzo, D.P.: Real and realistic quantum computers. Nature 393, 113–114
(1998)

28. Twamley, J.: Quantum-cellular-automaton quantum computing with endohedal
fullerenes. Phys. Rev. A 67, 052318 (2003)

29. Freegarde, T., Segal, D.: Algorithmic cooling in a momentum state quantum com-
puter. Phys. Rev. Lett. 91, 037904 (2003)

30. Ladd, T.D., Goldman, J.R., Yamaguchi, F., Yamamoto, Y., Abe, E., Itoh, K.M.:
All-silicon quantum computer. Phys. Rev. Lett. 89, 017901 (2002)

Nanocomputing by Self-assembly

Lila Kari

Department of Computer Science
University of Western Ontario

London, Ontario
Canada N6A 5B7
lila@csd.uwo.ca

Abstract. Biomolecular (DNA) computing is an emergent field of un-
conventional computing, lying at the crossroads of mathematics, com-
puter science and molecular biology. The main idea behind biomolecular
computing is that data can be encoded in DNA strands, and techniques
from molecular biology can be used to perform arithmetic and logic op-
erations. The birth of this field was the 1994 breakthrough experiment
of Len Adleman who solved a hard computational problem solely by
manipulating DNA strands in test-tubes. This led to the possibility of
envisaging a DNA computer that could be thousand to a million times
faster, trillions times smaller and thousand times more energy efficient
than today’s electronic computers.

I will present one of the most active directions of research in DNA
computing, namely DNA nanocomputing by self-assembly. I will namely
discuss the computational potential of self-assembly, the process by which
objects autonomously come together to form complex structures. I will
bring forth evidence that self-assembly of DNA molecules can be used to
perform computational tasks. Lastly, I will address the problem of self-
assembly of arbitrarily large super-shapes, its solution and implications.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, p. 27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Organic User Interfaces (Oui!):

Designing Computers in
Any Way Shape or Form

Roel Vertegaal

Xuuk Inc. / Human Media Laboratory
School of Computing, Queen’s University

Kingston, Ontario
Canada K7L 3N6
roel@xuuk.com

Abstract. Over the past few years, there has been a quiet revolution
in display manufacturing technology. One that is only comparable in
scope to that of the invention of the first LCD, which led to DynaBook
and the modern laptop. E-ink electrophoretic pixel technology, combined
with advances in organic thin-film circuit substrates, have led to displays
that are so thin and flexible they are beginning to resemble paper. Soon
displays will completely mimic the high contrast, low power consumption
and flexibility of printed media. As with the invention of the first LCD,
this means we are on the brink of a new paradigm in computer user
interface design: one in which computers can have any organic form or
shape. One where any object, no matter how complex, dynamic or flexible
its structure, may display information. One where the deformation of
shape is a main source of input.

This new paradigm of Organic User Interface (Oui!) requires a new
set of design guidelines, which I will discuss in this presentation. These
guidelines were inspired by architecture, which went through a similar
transformation decades ago. In Oui! The Input Device Is The Output
Device (TIDISTOD), Form dynamically follows Flow of activities of the
human body, and Function equals Form. I will give an overview of tech-
nologies that led to Organic UI, such as Tangible UI and Digital Desks,
after which I will discuss some of the first real Oui! interfaces, which in-
clude Gummi and PaperWindows. PaperWindows, which was developed
at HML, is the first real paper computer. It uses computer vision to track
sheets of real paper in real time. Page shape is modeled in 3D, textured
with windows and projected back onto the paper, making for a wireless
hi-res flexible color display. Interactions with PaperWindows take place
through hand gestures and paper folding techniques.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, p. 28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Unconventional Models of Computation

Through Non-standard Logic Circuits

Juan C. Agudelo1 and Walter Carnielli2

1 Ph.D. Program in Philosophy/Logic
IFCH and Group for Applied and Theoretical Logic- CLE

State University of Campinas - UNICAMP, Brazil
2 IFCH and Group for Applied and Theoretical Logic- CLE

State University of Campinas - UNICAMP, Brazil
SQIG - IT, Portugal

{juancarlos,carniell}@cle.unicamp.br

Abstract. The classical (boolean) circuit model of computation is
generalized via polynomial ring calculus, an algebraic proof method
adequate to non-standard logics (namely, to all truth-functional propo-
sitional logics and to some non-truth-functional logics). Such generaliza-
tion allows us to define models of computation based on non-standard
logics in a natural way by using ‘hidden variables’ in the constitution of
the model. Paraconsistent circuits for the paraconsistent logic mbC (and
for some extensions) are defined as an example of such models. Some po-
tentialities are explored with respect to computability and computational
complexity.

1 Introduction

The classical notion of algorithm is founded in the model of automated ma-
chines introduced by Turing in [18], now known as Turing machines, and in its
equivalent theories (λ-definability, partial recursive functions, uniform families
of boolean circuits, and so on). Surprising connections between classical logic
and classical computation have been established, as the equivalence between the
well-known ‘halting problem’ and the undecidability of first-order logic (see [18],
[3] and [2]), and the relationship between computational complexity and express-
ibility in logic (see [15, sec. 2] for a survey). The advent of so many non-classical
logics challenge us to think, prompted by the above connections, in the possibil-
ities of logic relativization of the notion of computability and in its conceivable
advantages. In this spirit we presented in [1] a model of ‘paraconsistent Turing
machines’, a generalization of Turing machines through a paraconsistent logic,
and proved that some characteristics of quantum computation can be simulated
by this kind of machines. In particular, we have showed how this model can be
used to solve the so-called Deutsch-Jozsa problem in an efficient way. In this
paper we propose another generalization of a classical model of computation
(boolean circuits), defining unconventional models of logic circuits where gate
operations are defined in accordance with adequate semantics for non-classical

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 29–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 J.C. Agudelo and W. Carnielli

propositional logics. The conspicuous unconventional peculiarities of our ap-
proach are represented by the use of non-truth functional logics to express logic
circuitry (instead of a physical or biological approach) and by the significance of
such logical standpoint in the foundations of the notion of computability. Some
initial inquires about advantages of this logic relativized notion of computability
are also addressed here.

A boolean circuit is basically a finite collection of input variables and logic
gates acyclically connected, where input variables can take values in {0, 1} (0
representing the truth value false and 1 representing the truth value true), and
each gate performs a boolean operation (e.g. AND, OR, NOT). Boolean circuits
can be viewed as computing boolean functions f : {0, 1}n → {0, 1}. A particular
computation is performed by establishing the values of the input variables and
reading the result of the computation as the output at the final gate (the gate
with no output connections to any other gate).1 It is clear that the classical
(boolean) circuit model of computation is based on classical propositional logic,
considering that gates operate in accordance with functional definitions of the
classical logic connectives. The fact that uniform boolean families of circuits are
a model for Turing machines clarifies much of the contents of celebrated Cook’s
theorem in [10]; in an analogous way, the L-circuits introduced in Section 3 could
shed light in certain aspects of computation related to non-standard logics.

In order to generalize boolean circuits, it is necessary to specify the input-
output alphabet (i.e. the set of values allowed for input variables and for outputs
of gates) as well as the gate operations. An obvious generalization of boolean
circuits to truth-functional many-valued logics would consist in considering the
set of truth values as the input-output alphabet, and defining logic gate opera-
tions as the functional definitions of the corresponding logic operation. In this
way, a logic circuit based in a many-valued logic with truth values set A would
compute functions of the form f : An → A.

In the case of infinite-valued logics, despite technical difficulties for imple-
mentation of infinitely many distinguishable symbols (for inputs and outputs),
the above generalization seems to be adequate for every many-valued logics;
however, the specification of gate operations is not obvious for logics without
truth-functional semantics.

The original logic relativization of boolean circuits that we propose here is
obtained via the polynomial ring calculus (PRC) introduced in [6], which is an
algebraic proof method basically consisting on the translation of logic formu-
las into polynomials and transforming deductions into polynomial operations.
As shown in [6], PRC is a mechanizable proof method particularly apt for all
finitely-many-valued logics and for several non-truth-functional logics as well,
provided that they can be characterized by two-valued dyadic semantics (see [5]).
The generalization of boolean circuits we are going to propose takes advantage
of the features of PRC, allowing to define logic gate operations through poly-
nomial operations, and restricting input-output values to finite sets. Interesting

1 This definition can be easily extended to compute functions of the form f : {0, 1}n →
{0, 1}m, allowing more than one final gate.

Unconventional Models of Computation 31

examples of our generalization are presented by exhibiting PRC for the paracon-
sistent logic mbC and for some extensions, while exploring some potentialities
of this model with respect to computability and computational complexity.

We present a summary of the PRC proof method and some illustrative ex-
amples following [6], before presenting the promised generalization of boolean
circuits.

2 Polynomial Ring Calculus

PRC consists in translating logic formulas into polynomials over the finite (Ga-
lois) fields GF (pn) (where p is a prime number and n is a natural number).2

PRC defines rules to operate with polynomials. The first group of rules, the
ring rules, correspond to the ring properties of addition and multiplication: ad-
dition is associative and commutative, there is a ‘zero’ element and all elements
have ‘addition inverse’; multiplication is associative, and there is a ‘one’ ele-
ment and multiplication distributes over addition. The second group of rules,
the polynomial rules, establishes that the addition of an element x exactly
pn times can be reduced to the constant polynomial 0; and that elements of
the form xi · xj can be reduced to xk(mod q(x)), for k ≡ i + j(mod (pn −
1)) and q(x) a convenient primitive polynomial (i.e. and irreducible polyno-
mial of degree n with coefficients in Zp). Two inference metarules are also
defined, the uniform substitution, which allows to substitute some variable in
a polynomial by another polynomial (in all occurrences of the variable), and
the Leibniz rule, which allows to perform substitutions by ‘equivalent’
polynomials.

The tip to define a PRC, for an specific logic, is to specify translation of
formulas into polynomials in such way that they mimic the conditions of an
adequate (correct and complete) class of valuations for the logic in question. We
will illustrate this point with some examples.

First, let us consider Classical Propositional Logic (CPL). Denoting by For
the set of well formed formulas of CPL, and using Greek letters as metavariables
for formulas, a CPL valuation is a function v: For → {0, 1} subject to the
following conditions (considering For over the alphabet {∧,∨,¬}):

v(ϕ ∧ ψ) = 1 iff v(ϕ) = 1 and v(ψ) = 1; (1)
v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1; (2)
v(¬ϕ) = 1 iff v(ϕ) = 0. (3)

In this case, For could be translated to polynomials in the polynomial ring
Z2[X] (i.e. polynomials with coefficients in the field Z2 and variables in the
set X = {x1, x2, . . .}). The translation function ∗: For → Z2[X] is defined
by:

2 The number p is usually called the characteristic of the field. The characteristic of
any finite field is necessarily a prime number, see for example [16].

32 J.C. Agudelo and W. Carnielli

p∗i = xi if pi is a propositional variable; (4)
(ϕ ∧ ψ)∗ = ϕ∗ · ψ∗; (5)
(ϕ ∨ ψ)∗ = ϕ∗ · ψ∗ + ϕ∗ + ψ∗; (6)
(¬ϕ)∗ = ϕ∗ + 1. (7)

Polynomial rules in this case establish that x + x can be reduced to 0 and that
x · x can be reduced to x. Assigning values in {0, 1} to variables in X , it can be
easily shown that:

(ϕ ∧ ψ)∗ = 1 iff ϕ∗ = 1 and ψ∗ = 1; (8)
(ϕ ∨ ψ)∗ = 1 iff ϕ∗ = 1 or ψ∗ = 1; (9)
(¬ϕ)∗ = 1 iff ϕ∗ = 0. (10)

which means that the translation ∗ characterizes all CPL-valuations. Conse-
quently, using ϕ(p1, . . . , pk) to express that ϕ is a formula with propositional
variables in {p1, . . . , pk}, we have the following theorem:

Theorem 1. �CPL ϕ(p1, . . . , pk) iff ϕ∗(a1, . . . , ak) = 1 for every (a1, . . . , ak) ∈
Z

k
2 .

And by theorem 2.3 in [6], we have:

Theorem 2. �CPL ϕ iff ϕ∗ reduces by PRC rules to the constant polynomial 1.

As an example of a proof of ϕ ∨ ¬ϕ in CPL using PRC (taking into account
Theorem 2):

(ϕ ∨ ¬ϕ)∗ = ϕ∗ · (¬ϕ)∗ + ϕ∗ + (¬ϕ)∗

= ϕ∗ · (ϕ∗ + 1) + ϕ∗ + ϕ∗ + 1
= ϕ∗ · ϕ∗ + ϕ∗ + ϕ∗ + ϕ∗ + 1
= ϕ∗ + ϕ∗ + ϕ∗ + ϕ∗ + 1
= 1

Now, let us consider the paraconsistent logic mbC, a fundamental logic in the
hierarchy of Logics of Formal Inconsistency (LFIs). Albeit not a finite valued
logic, mbC can be characterized by a non-truth-functional two-valued valuation
semantics (cf. [7], Sections 3.2 and 3.3). In this case, valuations are subject to the
following conditions (considering For over the alphabet {∧,∨,→,¬, ◦}, where ◦
denotes the ‘consistency’ operator):

v(ϕ ∧ ψ) = 1 iff v(ϕ) = 1 and v(ψ) = 1; (11)
v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1; (12)
v(ϕ → ψ) = 1 iff v(ϕ) = 0 or v(ψ) = 1; (13)
v(¬ϕ) = 0 implies v(ϕ) = 1; (14)
v(◦ϕ) = 1 implies v(ϕ) = 0 or v(¬ϕ) = 0. (15)

Unconventional Models of Computation 33

Note that implications in conditions (14) and (15) hold in one direction only, the
other direction being ‘indeterminate’. The way offered in [6] to mimic such non-
determination via polynomials is the introduction of new variables (outside the
set of variables for propositional variables) in the translations from formulas into
polynomials. In this paper, we will dub such new variables ‘hidden variables’.3

The simple but powerful strategy of introducing hidden variables is the key
idea for making PRC apt for a wide class of non-classical logics, including non-
truth-functional and infinite-valued logics. Using this strategy, formulas in mbC
can be translated into polynomials in the polynomial ring Z2[X], defining the
translation function ∗: For → Z2[X] by:

p∗i = xi if pi is a propositional variable; (16)
(ϕ ∧ ψ)∗ = ϕ∗ · ψ∗; (17)
(ϕ ∨ ψ)∗ = ϕ∗ · ψ∗ + ϕ∗ + ψ∗; (18)
(ϕ → ψ)∗ = ϕ∗ · ψ∗ + ϕ∗ + 1; (19)
(¬ϕ)∗ = ϕ∗ · xϕ + 1; (20)
(◦ϕ)∗ = (ϕ∗ · (xϕ + 1) + 1) · xϕ′ ; (21)

where xϕ and xϕ′ are hidden variables.4

For paraconsistent logics extending mbC where the formula ◦ϕ is equivalent
to the formula ¬(ϕ ∧ ¬ϕ) (such as C1, mCil, Cil, Cile, Cila, Cilae and Cilo,
see [7]; here we will refer to these logics as mbC+ logics), the translations of
◦ϕ and ¬(ϕ ∧ ¬ϕ) must be equivalent and dependent of the same variables.
For mbC, the translation of ◦ϕ is (◦ϕ)∗ = (ϕ∗ · (xϕ + 1) + 1) · xϕ′ , and the
translation of ¬(ϕ ∧ ¬ϕ) is (¬(ϕ ∧ ¬ϕ))∗ = ϕ∗ · (ϕ∗ · xϕ + 1) · xϕ∧¬ϕ + 1. The
only variables that do not match in these translations are xϕ′ and xϕ∧¬ϕ. Then,
for mbC+ logics, setting these variables as equal and taking into account that
both translations must be equivalent, we have that xϕ′ = xϕ∧¬ϕ = 1, and as
consequence (◦ϕ)∗ = ϕ∗ · (xϕ + 1) + 1.

Some valuation semantics introduce conditions over schemes of formulas with
more than one logic operator. For instance, paraconsistent logics with the axiom
¬¬ϕ → ϕ must have the following clause in its valuation semantic (cf. [7, p. 58]):

v(¬¬ϕ) = 1 implies v(ϕ) = 1. (22)

This kind of condition translate in ‘polynomial conditions’, i.e. relations between
polynomials that must be considered in any polynomial reduction. For mbC,
using the PRC presented above, the translation of the formula ¬¬ϕ is (¬¬ϕ)∗ =
(ϕ∗ · xϕ + 1) · x¬ϕ + 1. For a logic extending mbC, with a valuation semantic
including (22), the following polynomial condition must be taken into account:
3 In [6] such variables are called ‘quantum variables’, by resemblance with the ‘hidden

variables’ theories of quantum mechanics.
4 In the translation defined to mbC in [6] a different rule to translate ◦ϕ is presented,

but such translation does not permit that (◦ϕ)∗ and ϕ∗ take simultaneously the value
0, while the semantic valuation for mbC permits v(◦ϕ) = v(ϕ) = 0. Our definition
fix this problem.

34 J.C. Agudelo and W. Carnielli

(ϕ∗ · xϕ + 1) · x¬ϕ = 0 implies ϕ∗ = 1. (23)

3 Generalizing Boolean Circuits Via Polynomial Ring
Calculus

Having presented the PRC, it is now easy to generalize boolean circuits to a
wide extent of non-classical logics:

Definition 1 (L-circuit). Let L be a propositional logic provided with a PRC
over the finite field F . An L-circuit is a finite directed acyclic graph C = (V, E),
where V is the set of nodes and E the set of edges. Nodes without incoming edges
are called inputs of the circuit, and are denoted by variables (x1, x2, . . .) or by
constants (elements of F). Other nodes are called logic gates, and correspond
to logic operators of L. A logic gate evaluates the polynomial associated to the
corresponding logic operator and perform polynomial reductions in accordance
with the PRC for L. The gate without output connections to any other gate
gives the output of the circuit.

It is to be noted that any logic gate has at most one outcoming edge, and that
the number of incoming edges of a logic gate is determined by the arity of the
corresponding logic operator.

With this definition of L-circuit and the PRC presented to CPL in the pre-
vious section, it is easy to see that CPL-circuits behave just in the same way
as boolean circuits, as it would have to be expected. More interesting cases of
L-circuits are obtained when we consider the paraconsistent logic mbC and its
extensions, and their respective PRCs. For instance, the mbC-circuit for the
formula ¬p1 ∧ ¬p2 (graphically represented by the Figure 1) shows how ‘hidden
variables’ appear in the process of computation, giving place to ‘indeterminism’,
an interesting characteristic not present in boolean circuits.5

x1 �� ¬
x1·xp1+1

���
��

��
��

�

∧
(x1·xp1+1)·(x2·xp2+1)

��

x2 �� ¬
x2·xp2+1

����������

Fig. 1. mbC-circuit for the formula ¬p1 ∧ ¬p2

5 Probabilistic circuits are defined by introducing probabilistic input variables, but
such variables are independent of the logic operations (see [9, Sect. 2.12]). In other
words, indeterminism in probabilistic circuits is introduced by allowing indetermin-
ism in the inputs, but not generated by logic operations as in our L-circuits.

Unconventional Models of Computation 35

This mbC-circuit, when variables x1 and x2 take both the value 0, produces
the output 1 in a deterministic way. But when x1 takes the value 1, the output
depends on the hidden variable xp1 ; and when x2 takes the value 1, the output
depends on the hidden variable xp2 . Hidden variables, like input variables, have
to take values in F (the field used in the PRC, in this case Z2), and we could
assume that values to hidden variables are randomly assigned. Then, we could
distinguish between deterministic and non-deterministic L-circuits:

Definition 2 (Deterministic and non-deterministic L-circuit). An L-
circuit is deterministic if the reduced polynomial of the output gate does not
contain hidden variables, otherwise the L-circuit is non-deterministic.

Note that there may be deterministic L-circuits with hidden variables within
the circuit. For example, the mbC-circuit for the formula p1 ∨ ¬p1, graphically
represented by the following figure:

x1 ��

���
��

��
��

� ∨ 1 ��

¬
x1·xp1+1

���������

Fig. 2. mbC-circuit for the formula p1 ∨ ¬p1

It is also important to take into account that non-deterministic L-circuits
could behave deterministically for some specific inputs, like the mbC-circuit for
the formula ¬p1 ∧ ¬p2 presented above.

Now, having defined the concept of L-circuit, it is opportune to discuss its
potentialities. Main characteristics of any model of computation concerns its
computability power (the class of functions the model of computation can ex-
press) and its computational complexity. Classically, it is possible to show that
to every boolean function whose inputs have a fixed length, there is a boolean
circuit that computes such function (see for example [17, p. 79, prop. 4.3]).
Non-computable functions arise when we consider functions whose inputs have
arbitrary length. In this case it is necessary to define a family of circuits, which
is an infinite denumerable set of circuits {Ci}i∈N where the circuit Ci computes
inputs of length i. To accept a family of circuits as an effective procedure we
have to impose the restriction that such a family of circuits should be uniformly
generated, i.e. described by a Turing machine. Usually, uniform generation also
imposes computational complexity restrictions; it establishes, for example, that
the circuit must be generated by a polynomial time Turing machine, i.e. the time
taken to generate the circuit Ci must be a polynomial expression on i. A uni-
formly generated family of circuits is called a uniform family of circuits. It can
be proven that uniform families of boolean circuits are equivalent (with respect
to computability and computational complexity) to Turing machines (see [4]).

The next two sections explore potentialities of uniform families of L-circuits
as models of computation, first with respect to computability and then with

36 J.C. Agudelo and W. Carnielli

respect to computational complexity, considering only to the particular case of
paraconsistent logics.

3.1 Potentialities with Respect to Computability

Because paraconsistent logics are deductively weaker than CPL (or a version of
CPL in a different signature, see [7, Sect. 3.6]), we could think that the class
of functions computed by uniform families of paraconsistent L-circuits would be
narrower than functions computed by uniform families of boolean circuits, but
we will show that this is not the case for mbC.

Theorem 3. To every function computed by a uniform family of boolean circuits
there is a uniform family of mbC-circuits that computes such function.

Proof. Let the mapping t1: For → For◦ (where For is the set or formulas of
CPL and For◦ is the set or formulas of mbC) defined as:

1. t1(p) = p, for any propositional variable p;
2. t1(ϕ#ψ) = t1(ϕ)#t1(ψ), if # ∈ {∧,∨,→};
3. t1(¬ϕ) =∼ t1(ϕ), where ∼ is defined in mbC as ∼ ϕ = ϕ → (ψ∧ (¬ψ∧◦ψ)).

t1 conservatively translates CPL within mbC (cf. [7, p. 47]), that is, for every
Γ ∪ {ϕ} ⊆ For:

Γ �CPL ϕ iff t1(Γ) �mbC t1(ϕ),

where t1(Γ) = {t1(ψ) : ψ ∈ Γ}.
Using t1, the uniform family of boolean circuits could be algorithmically trans-

lated to an equivalent uniform family of mbC-circuits, just by changing the NOT
gates for subcircuits corresponding to the formula ϕ → (ψ ∧ (¬ψ ∧ ◦ψ)). It can
be checked that (ϕ → (ψ∧ (¬ψ ∧◦ψ)))∗ = ϕ∗ +1, which is the same polynomial
as in classical negation. �

The previous theorem can be generalized to several other paraconsistent logics,
that is, to those where a conservatively translation function from CPL can be
defined taking into account that such translation function must be effectively
calculated. In the other direction, the existence of uniform families of boolean
circuits to every uniform family of L-circuits (for any logic L provided with PRC)
is guaranteed by the classical computability of roots for polynomials over finite
fields. Then, the L-circuits model does not invalidate Church-Turing’s thesis.

Generalizing PRC to infinite fields could be a way to define models of ‘hyper-
computation’ (i.e. models that permit the computation of non Turing-machine
computable functions, see [11]). For the case where the field is the rational num-
bers with usual addition and multiplication, the output of a certain subclass
of L-circuits would be Diophantine polynomials, and thus the problem of de-
termining when L-circuits have 0 as output will be equivalent to the problem
of determining when Diophantine equations have solutions, a well-known classi-
cally unsolvable problem. However, in spite of the possibility of finding a clever
way (using hidden variables and polynomial operations) to determine 0 outputs

Unconventional Models of Computation 37

of L-circuits, hypercomputation would be attained at the cost of introducing
an infinite element into the model, which seems to be opposed to the intuitive
idea of ‘computable’ (but most models of hypercomputation, nevertheless, are
endowed with some kind of infinite element–see [12] and [13] for critiques of
hypercomputation).

3.2 Potentialities with Respect to Computational Complexity

Computational complexity potentialities can be thought in both directions too,
that is: are there uniform families of boolean circuits more efficient than uniform
families of paraconsistent L-circuits? And vice versa? The first question has an
immediate answer, but the other is not obvious. We will next show the answer
to the first question, and subsequently some ideas related to the second.

Theorem 4. To every function computed by a polynomial size uniform family
of boolean circuits there is a polynomial size uniform family of mbC-circuits that
computes such function.

Proof. The translation t1, defined in the proof of Theorem 3 adds only a poly-
nomial number of gates to the circuit (4 gates for every NOT gate). �

As in the case of Theorem 3, Theorem 4 can be generalized to several other
paraconsistent logics, those to where a conservative translation function from
CPL can be defined (taking into account that such translation function must be
effectively calculated and add at most a linear number of gates to the circuits).

The other direction is left as an open problem, but we will show some analogies
between quantum circuits (see [8]) and paraconsistent circuits that could be
valuable in looking for a positive answer.

The quantum circuit model of computation is a generalization of the boolean
circuits that depart from a quantum mechanics perspective. In a brief description
of such model of computation, we can say that classical bits are substituted
by qubits (or quantum bits). Qubits, in a similar way than classical bits, can
take values | 0 〉 and | 1 〉 (where | 0 〉 and | 1 〉 represent bases vectors in a two
dimensional Hilbert space), but the radical difference is that qubits admit also
superpositions (or linear combinations) of such values, following the rules of
the description of a quantum system in quantum mechanics. Superposition of
values are usually referred to as superposition states. In some interpretations of
quantum mechanics (as in the many-worlds interpretations), the states involved
in a superposition state are interpreted as coexisting, and then we can think
that qubits can take simultaneously the values | 0 〉 and | 1 〉, with probabilities
associated to each value. In quantum circuits, boolean gates are substituted
by quantum gates, which are unitary operators over qubits, also in agreement
with quantum mechanics. A relevant quantum gate is the so-called Hadamard
gate, which transforms base states into perfect superposition states (states where
probabilities are the same to any base state). Because quantum gates are also
linear operators, the application of a gate to a superposition state is equivalent to
the simultaneous application of the gate to every base state in the superposition.

38 J.C. Agudelo and W. Carnielli

This characteristic allows the circuit to compute in parallel, in what is called
quantum parallelism. The problem is that when a measurement is performed,
only one of the superposition states is obtained with a probability given by
the coefficients of the linear combination. Then, quantum algorithms must take
advantage (before performing the measurement) of global characteristics of the
functions computed in parallel.

We propose that outputs depending on hidden variables in L-circuits corre-
spond to superposition states, since the indeterminism introduced by hidden
variables allows us to simulate indeterminism of superposition states measure-
ments. Under this assumption, gates corresponding to ¬ and ◦ in mbC and
mbC+ logics, setting 1 as input, could be used to simulate the Hadamard gate
(because in mbC, (¬ϕ)∗(1) = xϕ +1 and (◦ϕ)∗(1) = xϕ ·xϕ′ , and in mbC+ logics
we have that (◦ϕ)∗(1) = xϕ). To illustrate how ¬ and ◦ gates could be used in
mbC-circuits and mbC+-circuits, we will demonstrate a relevant theorem:

Theorem 5. Let ϕ a formula in mbC and ϕ[pi/ψ] the formula obtained from
ϕ by uniformly replacing pi by ψ. Then, ϕ∗ = f(x1, . . . , xi, . . . , xn) implies that
(ϕ[pi/¬pi])∗(x1, . . . , 1, . . . , xn) = f(x1, . . . , xpi + 1, . . . , xn).

Proof. By induction on the complexity of ϕ. �

Theorem 5 shows that, for mbC, by uniformly replacing in a formula ϕ the
propositional variable pi with the formula ¬pi, and setting 1 to the input variable
xi in the corresponding mbC-circuit, we have that the output polynomial of the
mbC-circuit is equal to the polynomial for ϕ replacing the input variable xi with
xpi + 1.

A similar theorem can be established for mbC+ logics, uniformly replacing the
propositional variable pi with the formula ◦pi. In this case, the output polynomial
is equal to the polynomial for ϕ replacing the input variable xi with the hidden
variable xpi . This result could be used to compute satisfiability of CPL formulas
in a non-deterministic way, taking the translation of a CPL formula to a mbC+

logic (with a conservative translation), by uniformly replacing all propositional
variables pi with ◦pi and setting 1 to all input variables.

For example, the translation of the CPL formula ϕ = p1 ∧ p2 to a mbC+

formula (using the translation t1 above) is the same formula ϕ = p1 ∧ p2. Using
the PRC for mbC, and the translation of ◦ϕ to polynomials in mbC+ logics
already present above, we have that ϕ∗ = x1 ·x2 and (ϕ[p1/◦p1, p2/◦p2])∗(1, 1) =
xp1 · xp2 . Note that the only thing we did was to replace input variables with
hidden variables.

Obviously, for any CPL formula ϕ with propositional variables in {p1, . . . , pn},
if ϕ is satisfiable, then (t1(ϕ)[p1/ ◦ p1, . . . , pn/ ◦ pn])∗(1, . . . , 1) = 1 for some
assignment of values to hidden variables. An interesting question is whether there
exists any method, in accordance with PRC, that allows to eliminate hidden
variables in such a way that polynomials distinct to the constant polynomial 0
reduces to the constant polynomial 1. For some paraconsistent logics that we
have explored, this seems to be impossible, but we also do not have a definite
negative result (the possibility of polynomial conditions, see last paragraph of

Unconventional Models of Computation 39

Section 2, could be the key to obtain positive or negative results). We also have
to take into account that PRCs can be defined over distinct fields, and for other
(not necessarily paraconsistent) non-standard logics.

4 Final Comments

This paper proposes a natural way to generalize boolean circuit model of com-
putation to models based on non-standard logics. This opens possibilities to
integrate innovative concepts of non-standard logics into computational theory,
shedding light into the question of how depending on logic abstract notions of
computability and algorithmic complexity could be. Moreover, the generaliza-
tion proposed here has the advantage of being flexible enough to be almost
immediately adapted to a wide range of non-standard logics.

Cook’s theorem (cf. [10]) states that any NP-problem can be converted to
the satisfiability problem in CPL in polynomial time. The proof shows, in a
constructive way, how to translate a Turing machine into a set of CPL formu-
las in such a way that the machine outputs ‘1’ if, and only if, the formulas are
consistent. As mentioned in the introduction, a model of paraconsistent Turing
machines presented in [1] was proved to solve Deutsch-Jozsa problem in an effi-
cient way. We conjecture that a similar result as Cook’s theorem can be proven
to paraconsistent Turing machines. In this way, paraconsistent circuits could
be shown to efficiently solve Deutsch-Jozsa problem. Consequences of this ap-
proach would be the definition of ‘non-standard’ complexity classes relative to
such unconventional models of computation founded over non-classical logics.

Finally, another relevant question that we do not tackle in this paper refers to
physical viability: are there any physical implementations to the hidden-variable
model of computation presented here? We think that hidden-variable theories of
quantum mechanics (see [14]) could give a positive response to this question.

Acknowledgements

This research was supported by FAPESP- Fundao de Amparo Pesquisa do
Estado de So Paulo, Brazil, Thematic Research Project grant 2004/14107-2.
The first author was also supported by a FAPESP scholarship grant 05/05123-3,
and the second by a CNPq (Brazil) Research Grant 300702/2005-1 and by an
EU-FEDER grant via CLC (Portugal).

References

1. Agudelo, J.C., Carnielli, W.: Quantum algorithms, paraconsistent computation and
Deutsch’s problem. In: Prasad, B. (ed.) Proceedings of the 2nd Indian International
Conference on Artificial Intelligence, Pune, India, pp. 1609–1628 (2005)

2. Boolos, G., Jeffrey, R.: Computability and logic, 3rd edn. Cambridge University
Press, Cambridge (1989)

40 J.C. Agudelo and W. Carnielli

3. Richard Büchi, J.: Turing-machines and the Entscheidungsproblem. Mathematis-
che Annalen 148, 201–213 (1962)

4. Calabro, C.: Turing Machine vs. RAM Machine vs. Circuits. Lecture notes, avail-
able at http://http://www-cse.ucsd.edu/classes/fa06/cse200/ln2.ps

5. Coniglio Carlos Caleiro, M.E., Carnielli, W., Marcos, J.: Two’s company:
the humbug of many logical values. In: Beziau, J.-Y. (ed.) Logica Univer-
salis, pp. 169–189. Birkhäuser Verlag, Basel, Switzerland (preprint available at)
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf

6. Carnielli, W.A.: Polynomial ring calculus for many-valued logics. In: Werner, B.
(ed.) Proceedings of the 35th International Symposium on Multiple-Valued Logic,
pp. 20–25. IEEE Computer Society, Los Alamitos (2005), (preprint available at
CLE e-Prints vol 5(3), 2005),
http://www.cle.unicamp.br/e-prints/vol 5,n 3,2005.html

7. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of Formal Inconsistency. In:
Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn.
vol. 14, Kluwer Academic Publishers, Dordrecht (2005), (in print. preprint avail-
able at CLE e-Prints vol 5(1), 2005),
http://www.cle.unicamp.br/e-prints/vol 5,n 1,2005.html

8. Chuang, I.L., Nielsen, M.A.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

9. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer,
Heidelberg (2002)

10. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the
Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. ACM
Press, New York (1971)

11. Copeland, J.: Hypercomputation. Minds and machines 12, 461–502 (2002)
12. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: Life

and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2004)
13. Davis, M.: Why there is no such discipline as hypercomputation. Applied Mathe-

matics and Computation 178, 4–7 (2004)
14. Genovese, M.: Research on hidden variable theories: A review of recent progresses.

Physics Reports 413, 319–396 (2005)
15. Halpern, J.Y., Harper, R., Immerman, N., Kolaitis, P.G., Vardi, M.Y., Vianu, V.:

On the unusual effectiveness of logic in computer science. The Bulletin of Symbolic
Logic 7(2), 213–236 (2001)

16. Jacobson, N.: Basic Algebra I, 2nd edn. W. H. Freeman and Company, New York
(1985)

17. Papadimitriou, C.: Computational Complexity. Adisson-Wesley, London, UK
(1994)

18. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. In: Proceedings of the London Mathematical Society, pp. 230–265
(1936) (A correction, ibid, vol 43, pp. 544–546, 1936-1937)

http://http://www-cse.ucsd.edu/classes/fa06/cse200/ln2.ps
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf
http://www.cle.unicamp.br/e-prints/vol_5,n_3,2005.html
http://www.cle.unicamp.br/e-prints/vol_5,n_1,2005.html

Amoeba-Based Nonequilibrium Neurocomputer

Utilizing Fluctuations and Instability

Masashi Aono and Masahiko Hara

Local Spatio-temporal Functions Lab., Frontier Research System,
RIKEN (The Institute of Physical and Chemical Research),

Wako, Saitama 351-0198, Japan
masashi.aono@riken.jp

Abstract. We employ a photosensitive amoeboid cell known as a model
organism for studying cellular information processing, and construct an
experimental system for exploring the amoeba’s processing ability of in-
formation on environmental light stimuli. The system enables to examine
the amoeba’s solvability of various problems imposed by an optical feed-
back, as the feedback is implemented with a neural network algorithm.
We discovered that the amoeba solves the problems by positively ex-
ploiting fluctuations and instability of its components. Thus, our system
works as a neurocomputer having flexible properties. The elucidation of
the amoeba’s dynamics may lead to the development of unconventional
computing devices based on nonequilibrium media to utilize fluctuations
and instability.

Keywords: Bottom-up technology, Physarum, Optimization, Chaos.

1 Introduction

1.1 Fluctuations and Instability

Conventional computing devices are composed of rigid and stable materials to
pursue the accuracy and speed of their operations. Fluctuations and instability
of the materials are negative disturbing factors that should be suppressed. In
contrast, biological systems perform information processing based on fluctuated
and unstable materials. Nevertheless, biological organisms succeed in surviving
in harsh environments. They often demonstrate their ability to make flexible de-
cisions and seek creative solutions to overcome critical situations. It is difficult
for conventional digital computers to demonstrate the flexibility and creativity.
Exploring possible forms of processing based on fluctuated and unstable mate-
rials, therefore, may lead to the development of flexible and creative computers.
This expectation is one of our motives to carry out the study in this paper.

1.2 Nanotechnology for Next-Generation Device

Another motive is to tackle an issue faced by a specific field in nanotechnology
researches, where the development of next-generation computing devices inte-
grating a massive amount of molecular-scale components is one of immediate

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 41–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 M. Aono and M. Hara

priorities. Because it is extremely difficult to precisely manipulate all the com-
ponents in a top-down manner, bottom-up approaches to utilize self-assembling
behavior of the interacting components become increasingly important [1]. At
present, in most cases self-assembly is applied in fabrication processes of spatially
ordered structures of the components finally immobilized at static equilibrium.
The next issue, remaining as an open question, is what to process with the fabri-
cated structure, and how to make its components operate for the processing. The
top-down manipulation of the components would be difficult here again. There-
fore, it is necessary to explore potentials of processing realizable in a bottom-up
manner.

1.3 Self-organization in Nonequilibrium Media

On the other hand, in a field studying nonlinear dynamic systems, there are
several proposals to create processing units using self-organized spatiotemporal
patterns of chemical components at dynamic nonequilibrium [2]. Some oscilla-
tory or excitable chemical media, such as the Belousov-Zhabotinsky reaction
system, generate reaction-diffusion waves. The propagating wave transfers infor-
mation (for example an ON-state signal) from one site to another. Based on the
control of the passage, collision, coincident initiation and annihilation of multiple
propagating waves at particular sites, some authors have experimentally demon-
strated various processing units, such as a maze solver [3] and logical operators
[4]. There is a view that this form of processing gives an extremely simplified
model of information processing performed in biological cells.

In this form of processing, the fluctuations and instability in chemical media
are vital for providing the background for processing. The randomness driving
collisions of reactants is responsible for chemical reactions, and the unstable
reaction dynamics is necessary for producing the spatiotemporal patterns. How-
ever, unless the fluctuations and instability are kept at a moderate level, they
become negative disturbing factors, just as they are suppressed in conventional
devices. Indeed, because the coincidence of multiple propagating events is cru-
cial for ensuring the accuracy of processing results, the timing and orbit of
the wave propagation should not be fluctuated and destabilized. Some form of
top-down precise control of the propagating events is needed for ensuring the
accuracy, but it might undermine the significance of utilizing the bottom-up
behavior.

The basic principle of the above proposals, that operations of processing units
should be accurate and stable, is essentially identical with that of conventional
devices. It is necessary to dilute this basic principle for exploring potentials
of processing that utilize the bottom-up behavior involving fluctuations and
instability. We take a heuristic approach to discover a novel form of processing
whose principle is unknown. That is, first we construct a device using a specific
medium, and then try to find out what kind of processing would be the most
appropriate for the medium. In this paper, we employ a unicellular amoeboid
organism that is a kind of biological oscillatory media. As explained in the next
section, the amoeba is one of the most suitable organisms for our study.

Amoeba-Based Nonequilibrium Neurocomputer 43

Fig. 1. (A) A huge individual of unicellular amoeba (scale bar=5mm). (B) Au-coated
plastic barrier structure on agar plate without nutrients (scale bar=2 mm). The amoeba
acts only inside the structure where agar is exposed, as it averts the metal surface. Ini-
tial configuration < 0, 0, 0, 0, 0, 0, 0, 0 > is input by placing the amoeba at the center.
(C) Schematic of the body structure. (D) Schematic of the contraction-relaxation of
actomyosins. (E) The occurrence of rapid expansion/shrinkage of a branch vs. the os-
cillation phase difference between the branch and hub part. Results for rapid shrinkage
are shown upside down.

2 Materials and Methods

2.1 True Slime Mold

An amoeba of true slime mold Physarum polycephalum is a huge multinucleated
unicellular organism (Fig. 1A). In order to evaluate the amoeba’s processing abil-
ity by its rationality of the shape deformation, we confine an individual amoeba
within the stellate barrier structure put on an agar plate (Fig. 1B). The amoeba
concurrently expands or shrinks its multiple branches inside the structure. We
employed the amoeba because it has favorable features in its structure and func-
tion that fit for our purpose.

Body Structure. The amoeba’s body structure is extremely simple and ho-
mogeneous. Fig. 1C schematically shows the structure of when there are three
expanding branches. An individual amoeba has only a single gel layer (a sort
of cellular membrane) enveloping intracellular sol. The gel layer is formed by a
massive amount of actomyosins (fibrous proteins contained in muscle) capable
of taking contracting or relaxing states (Fig. 1D). These actomyosins are the
driver elements of the amoeba, as they play a major role in the shape deforma-
tion. Because numerous cell nuclei are distributed throughout the homogeneous
body of an individual amoeba, a part of the amoeba divided from the individual
survives as another self-sustainable individual. Conversely, multiple individuals
fuse together to form an individual when they are contacted. The simplicity
and homogeneity of the structure would make the elucidation of the amoeba’s
dynamics comparatively easy.

44 M. Aono and M. Hara

Oscillation. The gel layer has a sponge-like property in which extruding and
absorbing of intracellular sol is driven by the contraction and relaxation of
crosslinked actomyosins at a local site, respectively. Collectively entrained ac-
tomyosins generate rhythmic contraction-relaxation cycle observed as vertical
thickness oscillation of the gel layer (period=1 ∼ 2 min) with various spa-
tiotemporal patterns, where its physiological mechanism has not been eluci-
dated completely. As the phase of the oscillation varies from site to site, in-
tracellular sol is forced to stream horizontally (velocity=∼ 1 mm/sec) by the
pressure difference (gradient) derived from the contraction tension difference of
the gel layer. The oscillation induces the iterations of direction reversals of the
sol streaming in a shuttlewise manner. Intracellular substances including acto-
myosins and various chemicals essential for the contraction-relaxation oscillation
(e.g. Ca2+ and ATP) are transported by the sol to travel throughout the whole
body.

Deformation. A branch expands or shrinks at a velocity of at most 1 cm/h, as
the shuttlewise sol efflux-influx for the branch is iterated for several periods of
the oscillation. During our experiment, the amoeba deforms its shape without
changing its total volume by keeping a nearly constant amount of intracellular
sol. Fig. 1E shows the occurrence rate of rapid expansion/shrinkage of a branch
as a function of the oscillation phase difference between the branch and the hub
part. When a branch expands rapidly, it is notable that the branch and the
hub part synchronize in antiphase (i.e., phase difference ! 180◦). Conversely, in-
phase synchronization (i.e., phase difference ! 0◦) cannot yield rapid expansion.
The velocity of shrinkage was lower than that of expansion, and no significant
correlation with the phase difference was confirmed. These results suggest that;
i) a branch expands rapidly when its relaxing gel layer invites a greater influx of
the sol extruded by the contracting gel layer of the hub part (Fig. 1C), and ii) the
shrinkage of a branch is driven passively as the sol flows out to other expanding
branches. Namely, the amoeba’s decision on its horizontal shape deformation is
made by spatiotemporal patterns of vertical thickness oscillation [5].

Optimization Capability. Despite the absence of a central system, the
amoeba exhibits sophisticated computational capacities in its shape deforma-
tion. Indeed, the amoeba is capable of searching for a solution of a maze [6].
Inside a barrier structure patterned to have walls of the maze, the amoeba de-
forms its shape into a string-like configuration that is the shortest connection
path between two food sources at the entrance and exit of the maze. This result
shows that the amoeba realizes the optimization of the nutrient absorption ef-
ficiency and leads its whole body to a favorable condition for the survival. The
amoeba’s shape deformation is handled by spatiotemporal oscillation patterns.
The spatiotemporal pattern is self-organized by collectively interacting acto-
myosins. Therefore, the amoeba can be regarded as a sophisticated information
processor utilizing the bottom-up behavior of massively parallel components.
This feature fits for exploring potentials of processing realizable with nonequi-
librium media in a bottom-up manner.

Amoeba-Based Nonequilibrium Neurocomputer 45

B

C

VC
PJ

PC

SM

LS

A neuron i : inactive

amoeba

neuron i : active

light on
amoeba

light on
i+1i-1

X-shaped Y-shaped

Fig. 2. (A) Optical feedback system. For transmitted light imaging using a video cam-
era (VC), the sample circuit (SM) was illuminated from beneath with a surface light
source (LS). The recorded image was processed using a PC to update the monochrome
image for illumination with a projector (PJ). (B) Optical feedback rule: active state
xi(t) = 1 triggers light illumination yi−1(t + Δt) = yi+1(t + Δt) = 1 (white light
projected to rectangular regions). (C) All possible solutions of the problem.

2.2 Neural Network Implementation

State of Neuron. We call the i th path of the stellate structure “neuron i”
(i ∈ I = {1, 2, · · · , N = 8}). The amoeba’s shape is monitored using a video
camera at each interval of Δt = 6 sec (Fig. 2A). For each neuron i at time t,
whenever more than a quarter of the area of the i th neuron is occupied by the
amoeba’s branch, state 1 (active) is assigned as xi(t) = 1, otherwise xi(t) = 0
(inactive). The amoeba’s shape is freely deformable to fit into arbitrary boundary
condition of any network topology. Thus, the computing can be started from
arbitrary input configuration < x1(0), x2(0), · · · , xN (0) >.

Photoavoidance-Based Control. The amoeba’s branch exhibits photoavoid-
ance response. A branch is shrunk by a local light stimulation, as the light-
induced contraction enhancement of the gel layer intensifies the sol efflux (ex-
trusion) from the stimulated region [7]. A neuron, therefore, is led to be inactive
by illuminating the corresponding region. The illumination is carried out with a
projection of a monochrome image such that only the regions to be illuminated
are colored in white (Fig. 2A). We write yi = 1 if the light for the neuron i
is turned on. Conversely, if the neuron i is allowed to be xi = 1, the light is
turned off as yi = 0. Any neuron is activated naturally if it is not illuminated,
because the amoeba inherently tries to expand all branches to generate the con-
figuration < 1, 1, 1, 1, 1, 1, 1, 1 >. The illumination pattern < y1, y2, · · · , yN >,
therefore, leads the system configuration < x1, x2, · · · , xN > toward the ideal
configuration < x′

1, x
′
2, · · · , x′

N > such that all neurons satisfy the follwing con-
dition: x′

i = 1 − yi. We call this condition “counteractive rule” and adopt it as
our system’s control principle.

46 M. Aono and M. Hara

Feedback Dynamics. In assuming the counteractive rule, the optical feedback
system automatically updates the illumination pattern. The feedback is imple-
mented with a discrete form of recurrent neural network dynamics known as
Hopfield-Tank model [8]: yi(t + Δt) = 1 − f(ΣN

j=1wijxj(t)), where wij is the
weight assigned to the link from the neuron j to neuron i, and the threshold
θ = 0 defines the step function f(σ) = 1 if σ ≥ θ, otherwise 0. The illumination
pattern is updated at each interval with the change in the system configuration,
and again it induces further deformation of the amoeba.

Stable Equilibrium Solution. Any configuration is called “stable equilib-
rium” if and only if the counteractive rule is satisfied for all neurons. In a stable
equilibrium, the amoeba is no longer forced to reshape by illumination and can
fully expand its branches inside all nonilluminated neurons. Thus, the configu-
ration would be comfortable for the amoeba, and is expected to be stably main-
tained unless the amoeba spontaneously breaks the counteractive rule. In the
formalization of the recurrent neural network, a stable equilibrium is regarded
as a solution of the problem defined by assigning the weights. In general, there
exist multiple solutions, and each solution has minimum energy of the potential
energy landscape established by the network dynamics. Any medium that can
only relax toward its stable equilibrium, therefore, cannot bootstrap itself out of
a once-reached solution having locally minimum energy.

2.3 Embodiment of Problem Solving

Constraint Satisfaction Problem. We assigned the weights as wij = −1 if
|i− j| = 1, otherwise 0, to define the following symmetric rule for updating the
illumination (Fig. 2B): If the neuron i is active (xi(t) = 1), its adjacent neurons
i − 1 and i + 1 are induced to be inactive by illumination (yi−1(t + Δt) =
yi+1(t + Δt) = 1), where the boundary condition is periodic. This rule prohibits
two adjacent neurons i and i+1 from taking active state simultaneously. Another
interpretation of this rule is that each neuron is led to execute logical NOR-
operation known as a universal logic element: The neuron i is illuminated to be
inactive (xi(t+Δt) = 0), if at least one of its adjacent neurons is active (xi−1(t) =
1 or xi+1(t) = 1), otherwise (xi−1(t) = xi+1(t) = 0) nonilluminated to be active
(xi(t + Δt) = 1). Namely, the optical feedback imposes the following constraint
satisfaction problem: Find the system configuration < x1, x2, · · · , x8 > such
that all neurons satisfy xi = NOR(xi−1, xi+1). As a solution of this problem,
the amoeba is required to search for a stable equilibrium. There are 10 solutions
(Fig. 2C) consisting of rotation symmetric groups of < 1, 0, 1, 0, 1, 0, 1, 0 > (“X-
shaped”) and < 1, 0, 0, 1, 0, 0, 1, 0 > (“Y-shaped”).

Livelock and Deadlock. The concurrent processing of circularly connected
NOR-operators has a potential of creating a stalemated unsolvability of the
problem, when all operations are executed in a synchronous manner. Let us sup-
pose that all branches expand or shrink with a uniform velocity. From the initial
configuration < 0, 0, 0, 0, 0, 0, 0, 0 > evoking no illumination, the synchronous

Amoeba-Based Nonequilibrium Neurocomputer 47

expanding movements of all branches will lead to < 1, 1, 1, 1, 1, 1, 1, 1 >. In this
configuration, all neurons are illuminated. Then, all branches shall shrink uni-
formly to evacuate from the illuminations. This leads all branches to return to
the initial configuration that allows them to expand again. In this manner, the
system can never attain a solution, as the synchronous movements result in a
perpetual oscillation between < 0, 0, 0, 0, 0, 0, 0, 0 > and < 1, 1, 1, 1, 1, 1, 1, 1 >.
This type of stalemated situation is called “livelock”.

On the other hand, let us assume that the problem could be solved success-
fully. The amoeba is expected to stably maintain the solution because it would
be a temporarily comfortable condition. However, the amoeba would inherently
intend to search for foods by the deformation with the expanding behavior of
branches. Permanently maintaining the solution, therefore, eliminates any pos-
sibility of feeding and brings about its death from starvation1. This is another
type of stalemated situation resembling “deadlock”. Thus, our experiment re-
quests the achievement of the following two goals to the amoeba; the amoeba
should be capable of not only livelock avoidance for attaining a solution, but also
deadlock avoidance for breaking away from the solution [9,10,11]. We carried out
the experiment to observe how the amoeba copes with the stalemated situations
in a bottom-up manner.

3 Results

3.1 Problem Solving Process

Spatiotemporal Oscillation Pattern. The experiment was started from the
initial configuration < 0, 0, 0, 0, 0, 0, 0, 0 > (Fig. 1B) by placing the amoeba’s
spherical piece (0.75±0.05 mg) at the center of the stellate structure. In the early
stage, the amoeba flattened its spherical shape to turn into disc-like shape, and
horizontally expanded its thin periphery in a circularly symmetric manner. As
shown in panels of Fig. 3, by binarizing the phase of vertical thickness oscillation
of each local site into increasing (relaxing) and decreasing (contracting) phases,
we can clearly observe spatiotemporal oscillation patterns.

Spontaneous Symmetry-Breaking. The amoeba’s circular deformation (i.e.,
synchronous expanding movements of all branches) would be inevitable if realiz-
able spatiotemporal patterns were limited to circularly symmetric ones. However,
we observed that the amoeba produces various symmetry-broken patterns, and
the pattern varies nonperiodically in a complex manner. As shown in Fig. 3A,
the symmetry was spontaneously broken as a defective site was created in the
periphery. The defective site was exclusively expanded at a velocity relatively
larger than that of the rest, and developed into a distinct branch having enough
occupying area inside the neuron 8 to evoke the illumination.
1 Although no food source is given in our experimental condition, the amoeba in our

experiment can survive without any food for up to about a week because it can store
nutrients fed before the experiment as internal energy source.

48 M. Aono and M. Hara

Fig. 3. Time course of events in computing process. (A) Transient configuration
< 0, 0, 0, 0, 0, 0, 0, 1 >. Illuminated regions are indicated by rectangles. The oscilla-
tion phase is binarized into the relaxing (thickness increasing) and contracting (de-
creasing) states, represented by the black (red in colored version) and gray (blue)
pixels, respectively. (B) First-reached solution < 0, 1, 0, 0, 1, 0, 0, 1 > (duration�4
h). (C) Spontaneous destabilization. The solution B < 0, 1, 0, 0, 1, 0, 0, 1 > (left)
evolved into < 0, 1, 1, 0, 1, 0, 1, 1 > (right). Arrows indicate the growth directions of
the newly emerged branches expanding under illumination contrary to photoavoid-
ance. (D) Second-reached solution < 0, 1, 0, 0, 1, 0, 1, 0 > (duration�1 h). (E) Spon-
taneous destabilization. The solution D < 0, 1, 0, 0, 1, 0, 1, 0 > (left) evolved into
< 0, 1, 0, 0, 1, 0, 1, 1 > (right). (F) Third-reached solution < 0, 1, 0, 1, 0, 1, 0, 1 >
(duration�7 h).

Solution Seeking with Livelock-Breaking. Sometimes we observe the
livelock-like situation in which the amoeba’s circularly symmetric deformation
continues by keeping its disc-like shape until all neurons are illuminated. Even
in that case, the symmetry is spontaneously broken and movements of pe-
ripheral parts become asynchronously fluctuated with mutual time lags. Ow-
ing to the asynchronously fluctuated movements, the livelock-like stalemate was
avoided, and the amoeba searched for the solution < 0, 1, 0, 0, 1, 0, 0, 1 > shown in
Fig. 3B. The solution was stably maintained for about 4 h. We observed that
the spatiotemporal pattern of vertical oscillation evolves nonperiodically while
the amoeba’s shape in the solution is unchanged horizontally [12,13,14].

3.2 Searching Ability of Multiple Solutions

Destabilization of Solution with Deadlock-Breaking. The stabilization
of the solution (Fig. 3B) was longly persisted as if the amoeba is stalemated
in a deadlock-like situation. However, the stabilizing mode was spontaneously
switched to the destabilizing mode without any explicit external perturbation.

Amoeba-Based Nonequilibrium Neurocomputer 49

Interestingly, the amoeba broke through the deadlock, as two branches suddenly
emerged and started to invade illuminated regions (Fig. 3C). The invading be-
havior against the counteractive rule is contrary to the photoavoidance response.

Spontaneous Switching between Stabilizing and Destabilizing Modes.
While aggressive expansion of the branch 7 was sustained under illumination,
the branch 8 was shrunk by illumination. In this manner, the branches iterated
their asynchronously fluctuated movements again. As a result, the amoeba suc-
ceeded in searching for another solution < 0, 1, 0, 0, 1, 0, 1, 0 > (Fig. 3D). Then
amoeba stabilized its shape at the second solution for about 1 h. After that,
the spontaneous destabilization occurred once more (Fig. 3E), and eventually
the amoeba attained the third solution < 0, 1, 0, 1, 0, 1, 0, 1 > maintained for
about 7 h (Fig. 3F). Within 16 h of the observation, the amoeba successively
searched for three solutions by repeatedly switching between the stabilizing and
destabilizing modes.

3.3 Statistical Results

We carried out 20 experimental trials measured for an average of 14.5 h. As shown
in Fig. 4A, in every trial at least one solution was searched, and transition among
an average of 3.25 solutions (gross number including multiple attainments of an
identical solution) was realized per a trial. This result implies that the amoeba
significantly has the capabilities of searching for solutions and destabilizing the
solutions.

The transition among solutions was observed as nonperiodic. As shown in
Fig. 4B, the duration of a solution distributes within a range of about 0.5 h
to 12 h. The durations of X-shaped solutions are relatively longer than that of
Y-shaped ones. This suggests that X-shaped solutions are more stable than Y-
shaped ones. The transition is stochastic in a sense that a solution has a potential
to evolve into multiple solutions. We confirmed that transition from more stable
X-shaped solution to less stable Y-shaped one is possible.

Fig. 4. Statistical results. All data were obtained from 20 trials. (A) Frequency distri-
bution of the number of solutions searched. (B) Frequency distribution of the duration
time of stay in a solution. Results were evaluated separately for X-shaped and Y-shaped
solutions, and are shown in a stacked manner (e.g., Y-shaped ones maintained for the
range of 0.5 to 1 h were observed 13 times).

50 M. Aono and M. Hara

4 Discussions

4.1 Biological Implication of Spontaneous Destabilization

In the stabilizing mode, all branches keep away from illumination for maintain-
ing a solution. In the destabilizing mode, under equal illumination conditions,
some branches enterprisingly invade aversive illuminated regions contrary to
their photoavoidance, while others remain shrunk as usual. This implies that
the amoeba’s photoavoidance response is nonuniform spatially and temporally.
This flexibly variable stimulus-response would be essential for the survival of the
amoeba required to search for food in a harsh environment, because it enables
the amoeba surrounded by aversive stimuli to break through the stalemated sit-
uation with enterprising responses. In our experiment, the deadlock-like critical
situation in which the amoeba is stuck in its starved condition was flexibly bro-
ken by the amoeba’s spontaneous destabilization. That is, unstable phenomena
have a positive aspect to produce the flexibility.

4.2 Mechanism of Emergence of New Branch

The spontaneous destabilization is realized as new branches emerge suddenly,
although its mechanism remains to be seen. In most cases, a new branch emerges
as a singularly thick structure with localized large vertical oscillation amplitude.
It appears to intensively invite a drastic sol influx from a broad domain. Figure 5
illustrates our speculation that the singularly thick structure is formed as intra-
cellular sol spouts vertically from the gel layer’s defective site where it is locally
fragile to be ruptured (i.e., crosslinking of actomyosins is broken). According to
this assumption, the structure of the newly emerged branch is composed chiefly
of extruded sol and is not covered by a sufficient quantity of gel to actualize
light-induced contraction. Such a soft blob-like structure must be incapable of
photoavoidance response, and thus it can be extruded to expand flexibly even
under unfavorable illuminated conditions. Fragile and unstable components of
biological systems may provide a positive aspect to enable flexible behavior.

Fig. 5. Schematic of speculated process in the emergence of a new branch. A fragile
defect of the gel layer is ruptured, and a new branch is formed as the sol spouts from
the defect. The branch rapidly develops through self-repairing process of the defect.

Amoeba-Based Nonequilibrium Neurocomputer 51

4.3 Origin of Spontaneous Destabilization

The spontaneous switching between the stabilizing and destabilizing modes (i.e.,
the transition among solutions) was observed as nonperiodic and stochastic. As
one of its possible origins, we suppose the combination of intrinsic microscopic
fluctuations and spatiotemporal chaos characterized as nonperiodic but nonran-
dom behavior. Indeed, the system’s behavior is chaotic as its time evolution is
unstable and unreproducible. Its capability of successively searching for multiple
solutions, however, is robustly maintained and qualitatively reproducible. This
resembles the robustness of strange attractors of chaotic systems.

Unstable chaotic dynamics with properly tuned parameter intermittently
switches between the stabilizing and destabilizing modes by exponentially am-
plifying microscopic fluctuations [15]. That is, fluctuations in the microscopic
level such as the thermal noise, nonuniformity of chemical distributions, and the
gel layer’s uneven stiffness distribution (density distribution of crosslinked acto-
myosins), are amplified to an extensive and sustained movements of the macro-
scopic level. Some form of positive feedback effect by the coupling of chemical,
physiological, and hydrodynamic processes may be responsible for the amplifi-
cation process.

4.4 Applications

Logical Circuit, Associative Memory, and Optimization Problem
Solver. The amoeba’s capability to search for a stable equilibrium under our
optical feedback allows our system to be developed to a logical circuit holding
a kind of computational universality. By properly altering the system parame-
ters including the number of neurons, thresholds, and weights, our system can
implement a network of the McCulloch-Pitts neurons capable of simulating any
Boolean logic operations with the network architecture allowing arbitrary circuit
wiring [16]. In addition, the system can be developed to an associative memory
device by regarding a stable equilibrium as a predefined memory pattern.

Moreover, the amoeba’s capability of transition among multiple stable equilib-
ria may fit for solving combinatorial optimization problem (e.g. traveling sales-
man problem), because it may assist searching for a global optimum solution
without being stuck at local optima. The usefulness of chaotic dynamics for com-
binatorial optimization has already been clarified with chaotic neural network
models, where both stabilizing and destabilizing effects contribute to efficient
searching dynamics [17,18].

Future Perspective on Flexible Device. In the conventional computing
paradigm, deadlock can be avoided in the software level, if it is possible to
prescribe an appropriate resource allocation protocol comprehending potential
resource requests from all processes. However, no programmer can know what
the processes will request in advance of the coding without actual executions.
This means that deadlock avoidance is often impossible for many practical sys-
tems. On the other hand, our system flexibly breaks through the livelock-like

52 M. Aono and M. Hara

and deadlock-like situations and searches for several solutions without provid-
ing any particular resource allocation protocol. This is because the amoeba’s
spatiotemporal oscillation patterns autonomously materialize and alter the allo-
cation of intracellular sol to its branches in a bottom-up manner. In contrast to
the conventional paradigm based on hardwares operating passively as instructed
by software programs, the amoeba as a hardware in our system actively alters
the interpretation of the software program (i.e., the control principle with the
feedback algorithm). This unique capability would be advantageous in the devel-
opment of autonomous systems operated in actual environments, such as robot
control systems [19]. It may enable the robot to flexibly respond to concurrent
occurrences of unexpected events that would lead the robot to stalemated situ-
ations, even if the programs prescribed only for expected events were defective
or useless for searching for solutions to overcome the situations.

Although dramatic improvement in its slow processing speed is unpromising
as long as the amoeba is used, it may be possible to develop our computing
scheme by implementing with other faster materials, if the dynamics of the
amoeba’s oscillatory behavior is elucidated. Potential candidates suitable as the
alternative materials would be oscillatory or excitable nonequilibrium media
capable of spontaneously breaking the spatiotemporal symmetries in a chaotic
manner.

5 Conclusions

Our discoveries and discussions in this paper are summarized as follows.

1. Fluctuations and instability in the amoeba’s components have positive as-
pects to produce the enhancement of searching ability and the flexibility of
decision-making ability.
– The amoeba is capable of searching for a stable equilibrium solution

of a constraint satisfaction problem, due to its ability to fluctuate its
movements for breaking through a livelock-like stalemated situation.

– The amoeba is capable of searching for multiple solutions one after an-
other by spontaneously destabilizing once-reached solutions, because it
has flexibility to change its stimulus-response for breaking through a
deadlock-like stalemated situation.

2. The above problem solving is realizable owing to the amoeba’s rebellious
behavior against the feedback control, and it presents a possible form of
processing to utilize the bottom-up behavior of fluctuated and unstable
materials.

3. The amoeba’s searching ability and flexibility allow our system to be devel-
oped to logical circuits, associative memory devices, combinatorial optimiza-
tion problem solvers, and novel devices that flexibly respond to occurrences
of unexpected events.

4. If the amoeba’s oscillatory dynamics is elucidated, our proposal may be
implementable by other faster nonequilibrium medium.

Amoeba-Based Nonequilibrium Neurocomputer 53

References

1. Whitesides, G.M., Grzybowski, B.A.: Self-Assembly at all Scales. Science 295,
2418–2421 (2002)

2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers.
Elsevier, UK (2005)

3. Steinbock, O., Toth, A., Showalter, K.: Navigating Complex Labyrinths: Optimal
Paths from Chemical Waves. Science 267, 868–871 (1995)

4. Motoike, I., Yoshikawa, K.: Information operations with an excitable field. Phys.
Rev. E 59, 5354–5360 (1999)

5. Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction
pattern. Biophys. Chem. 84, 195–204 (2000)

6. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Na-
ture 407, 470 (2000)

7. Ueda, T., Mori, Y., Nakagaki, T., Kobatake, Y.: Action spectra for superoxide
generation and UV and visible light photoavoidance in plasmodia of Physarum
polycephalum. Photochem. Photobiol. 48, 705–709 (1988)

8. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: A model. Science 233,
625–633 (1986)

9. Aono, M., Gunji, Y.P.: Beyond input-output computings: Error-driven emergence
with parallel non-distributed slime mold computer. BioSystems 71, 257–287 (2003)

10. Aono, M., Gunji, Y.P.: Resolution of infinite-loop in hyperincursive and nonlo-
cal cellular automata: Introduction to slime mold computing. In: Dubois, D.M.
(ed.) Computing Anticipatory Systems: CASYS 2003. AIP conference proceedings,
vol. 718, pp. 177–187 (2004)

11. Aono, M., Gunji, Y.P.: Material implementation of hyperincursive field on slime
mold computer. In: Dubois, D.M. (ed.) Computing Anticipatory Systems: CASYS
2003. AIP conference proceedings, vol. 718, pp. 188–203 (2004)

12. Takamatsu, A., et al.: Time delay effect in a living coupled oscillator system with
the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85, 2026 (2000)

13. Takamatsu, A., et al.: Spatiotemporal symmetry in rings of coupled biological
oscillators of Physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)

14. Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns
in three-oscillator systems constructed with oscillatory cells of true slime mold.
Physica D 223, 180–188 (2006)

15. Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond - A Constructive
Approach with Applications in Life Sciences. Springer, New York (2001)

16. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. The MIT
Press, Cambridge, Massachusetts (2003)

17. Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Phys. Lett. A 144,
333–340 (1990)

18. Hasegawa, M., Ikeguchi, T., Aihara, K.: Combination of Chaotic Neurodynam-
ics with the 2-opt Algorithm to Solve Traveling Salesman Problems. Phys. Rev.
Lett. 79, 2344–2347 (1997)

19. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot Control with Biological Cells. In:
Proceedings of Sixth International Workshop on Information Processing in Cells
and Tissues, pp. 202–216 (2005)

54 M. Aono and M. Hara

Appendix

Experimental Setups

The amoeba was fed by oat flakes (Quaker Oats, Snow Brand Co.) on a 1% agar
gel at 25◦C in the dark. The stellate barrier structure (thickness approximately
0.2 mm) is made from an ultrathick photoresist resin (NANOTM XP SU-8 3050,
MicroChem Corp.) by a photolithography technique, and was coated with Au
using a magnetron sputter (MSP-10, Shinkuu Device Co., Ltd.). The experi-
ments were conducted in a dark thermostat and humidistat chamber (27±0.3
◦C, relative humidity 96±1%, THG062PA, Advantec Toyo Kaisha, Ltd.). For
transmitted light imaging, the sample was placed on a surface light guide (MM80-
1500, Sigma Koki Co., Ltd.) connected to a halogen lamp light source (PHL-
150, Sigma Koki Co., Ltd.) equipped with a band-pass filter (46159-F, Edmund
Optics Inc.), which was illuminated with light (intensity 2 μW/mm2) at a wave-
length of 600±10 nm, under which no influence on the amoeba’s behavior was
reported (Ueda et al., 1988). The intensity of the white light (monochrome color
R255:G255:B255) illuminated from the projector (3000 lm, contrast ratio 2000:1,
U5-232, PLUS Vision Corp.) was 123 μW/mm2. The outer edge of the circuit
(border between the structure and the agar region) was always illuminated to
prevent the amoeba from moving beyond the edge.

Unconventional “Stateless” Turing–Like

Machines

Joshua J. Arulanandham

School of Computing Sciences
VIT University, Vellore, India

hi josh@hotmail.com

Abstract. We refer to Turing machines (TMs) with only one state as
“stateless” TMs. These machines remain in the same state throughout
the computation. The only way they can “remember” anything is by
writing on their tapes. Stateless TMs have limited computing power:
They cannot compute all computable functions. However, this handicap
of a stateless TM can be overcome if we modify the TM a little by
adding an extra feature. We propose a modified Turing–like machine
called a JTM—it is stateless (has only one internal state) by definition—
and show that it is as powerful as any TM. That is, a JTM does not
switch states, and yet can compute all computable functions. JTMs differ
from conventional TMs in the following way: The tape head spans three
consecutive cells on the tape; it can read/write a string of three (tape)
symbols all at once. However, the movement of the head is not in terms
of “blocks of three cells”: in the next move, the head does not “jump”
to the adjacent (entirely new) block of three cells; it only shifts itself by
one cell—to the right or to the left. A JTM is more than a product of
theoretical curiosity: it can serve as a “normal form” and might lead to
simpler proofs for certain theorems in computation theory.

1 Turing Machines

Turing machines (TMs), proposed by Alan Turing [2] in 1936, are one of the
first “toy models” that were used to define precisely the notions of computa-
tion and computability—what it means to “compute”, and what can and cannot
be computed. A TM is actually a simple mechanical device that does symbol–
manipulation (which one can actually build, if one wants to!), but is often em-
ployed as a “paper machine”, i.e. as a theoretical construct in computer science.
Theorems regarding the nature of computation proven using TMs apply to real
computers, since TMs faithfully model real computers, i.e. any input–output
function computable on a digital computer can be computed on a TM [1]. In
what follows we first give an informal description of the Turing machine, and
then, some formal definitions.

The Turing machine has a tape that is divided into cells (squares); the tape
extends infinitely to the right and to the left. Each cell of the tape can hold a
symbol. The tape initially contains the input—a finite string of symbols in the

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 55–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 J.J. Arulanandham

input alphabet—and is also used to hold the output, once the computation is
over. Cells other than those containing the input are initially “blank”, i.e. they
hold the special (blank) symbol B. “Computation” on a TM is accomplished by
reading and (over)writing symbols on the tape: There is a tape head (initially
positioned over the left most symbol of the input) that hops from cell to cell,
reading and writing a symbol. The tape head (its movement, read/write process)
is controlled by a control unit that can switch between different states (a finite
set), each of which represents a certain “mode of operation”1. Each move of a
TM depends on two things: the state of the control unit and the symbol being
read (scanned) by the tape head. In one move, a TM will: (i) Write a (possibly,
new) symbol on the cell under the tape head, (ii) Shift the tape head one cell,
to the left or to the right and, (iii) Update the state of the control unit, possibly
changing it to a new state.

Definition 1. A TM can be described as a 6–tuple M = (Q, Σ, Γ, δ, q0, B) where
Q is the finite set of states of the control unit, Σ is the finite set of input
symbols, Γ is the set of tape symbols (Σ is a proper subset of Γ), δ : Q× Γ →
Q×Γ ×{L, R} is the transition function, q0 ∈ Q is the start state of the control
unit, and B is the blank symbol (which is in Γ , but not in Σ) that initially
appears throughout the tape except on finitely many cells that contain the input
symbols. The transition function δ(q, X) takes as arguments a state q and a tape
symbol X and returns a triple (q′, X ′, D) where q′ ∈ Q is the next state, X ′ ∈ Γ
is the symbol written on the cell being scanned, and D is a direction (left or
right) that tells where the head shifts in the next move.

The state of the control unit, the symbol being scanned on the tape, and the
entire content of the tape together constitute the configuration (“snapshot”) of a
TM and will be described with the string X1X2 . . . Xi−1qXiXi+1 . . . Xn, where
q is the state of the machine, X1X2 . . . Xn is the portion of the tape between the
leftmost and rightmost nonblanks and, Xi is the symbol being scanned.

A TM will halt if it reaches some state q while scanning a certain tape symbol
X , and no next move is defined for this situation, i.e. δ(q, X) is left undefined.
When a machine halts, the portion of the tape between the leftmost and right-
most nonblanks represents the output of the computation.

Finally, we offer an idea that is useful while programming a TM: It is some-
times easier if we imagine the tape as being composed of multiple tracks, each
track containing its own sequence of symbols. Thus, in the “new” multi–track
machine, sequence of symbols appear one over the other, and therefore, a single
cell must be thought of as holding a “mega symbol”—a tuple such as [X, Y, Z],
for example (the tape alphabet will consist of tuples). Note that the multi–track
idea has not changed the basic Turing machine model in any way.

The focus of this paper is on TMs with only one state, which we refer to as “state-
less” TMs. These machines remain in the same state throughout the computation.
The only way they can “remember” anything is by writing on their tapes. Stateless
1 Restricting the number of states of a TM to one restrains its computational power.

TMs with only one state cannot compute all computable functions.

Unconventional “Stateless” Turing–Like Machines 57

TMs have limited computing power: They cannot compute all computable func-
tions. However, this handicap of a stateless TM can be overcome if we modify the
TM a little by adding an extra feature. In the next section, we introduce a modified
Turing–like machine called a JTM—it is stateless (has only one internal state) by
definition—and show that it is as powerful as any TM. That is, a JTM does not
switch states, and yet can compute all computable functions.

2 Enter JTM

A JTM is a Turing machine (as defined in the previous section) with the following
special features:

– The tape head is wider than that of an ordinary TM. It spans three consec-
utive cells on the tape (we will refer to the three cells being scanned as the
current “window”); it can read/write a string of three (tape) symbols under
the window, all at once2. However, the movement of the head is not in terms
of “blocks of three cells”: in the next move, the head does not “jump” to
the adjacent (entirely new) block of three cells; it only shifts itself by one
cell—to the right or to the left.

– The finite state control has only one state and remains in that state forever.
This means, the notion of “state switching” (and consequently, the very
notion of “states”) becomes unnecessary in the context of a JTM.

Note that, initially (before the computation begins), the tape head will be scan-
ning the leftmost cell containing the input and the two cells on its right. A move
of the JTM is a function of only one thing: the 3–letter string in the window
being scanned. Based on this 3–letter string every “next move” of the JTM will:

(a) First, write a 3–letter string (of tape symbols) in the window being
scanned.

(b) Then, shift the tape head by one cell—to the left or to the right.

We now give a formal definition of a JTM.

Definition 2. A JTM can be described as a 4–tuple J = (Σ, Γ, δ, B) where Σ is
the finite set of input symbols, Γ is the set of tape symbols (Σ is a proper subset of
Γ), δ : Γ 3 → Γ 3 × {L, R} is the transition function, and B is the blank symbol
(which is in Γ , but not in Σ) that initially appears throughout the tape except on
finitely many cells that contain the input symbols. The transition function δ(X)
maps X, the 3–letter string over Γ in the window being scanned, to a pair (X ′, D)
where X ′ is a 3–letter string that overwrites the string in the window, and D is a
direction (left or right) that tells where the head shifts in the next move.

Observe that, in the above definition of a JTM, the components Q (set of states)
and q0 (initial state) have been dropped from the 6–tuple definition of a TM.
2 The usage of the phrase “current window” in the context of a JTM is analogous to

that of “current cell” in a TM.

58 J.J. Arulanandham

Like multi–track TMs, we can have JTMs with multiple tracks where each tape
symbol is a tuple. In the following section we will use a two–track JTM to
simulate a TM.

3 JTMs Can Simulate TMs

The question arises: Why is a new TM incarnation necessary at all? The answer
is, when we “relax” the definition of a TM by allowing the head to scan a window
of three cells (as opposed to scanning a single cell), a miracle occurs: An explicit
notion of the state of the finite control becomes an extra baggage that can be
gotten rid of. In a sense, it becomes easier and simpler to describe what goes on
inside a JTM during each “move”: The head reads/writes a string and makes a
shift in a given direction. That is all. The state changes in the finite control need
no longer be tracked in the new model. And, all this comes without having to
lose any of the original computing power of a TM, a fact we will formally prove
in what follows.

Theorem 1. Any input–output function computable by a Turing machine can
be computed by a JTM.

Proof. Consider an input–output function f : Σ∗ → Σ∗ that is computable by
a TM M = (Q, Σ, Γ, δ, q0, B), where the symbols have the usual meanings (as
discussed in the preceding sections). We will directly construct a JTM J with two
tracks that simulates M on input w, thus proving that JTM J can compute f .
Let J = ({B} ×Σ, ({B} ∪Q)× Γ, δ′, [B, B]) where δ′ is the transition function
which will be described shortly. From now on we will write a symbol such as

[B, B] as
B

B, the way it would actually appear on the two–track tape. Initially
J holds on the lower track of its tape whatever M would have on its tape
initially, i.e. the input w surrounded by blanks (B’s). The upper track, which
is completely blank to start with, will be used to keep track of the simulated
states of M : J will “scribble” state labels (such as “q0”, “q1”, etc.) on the upper
track so as to remember which state M is currently in. (M ’s simulated states
are recorded in such a way that M ’s current state and the current symbol being
scanned will always appear together as a single symbol (tuple) on the same cell of
the tape.) Before the simulation begins, the tape head is parked over the leftmost
cell holding the input and the two cells immediately on its right.

In this paragraph, before formally spelling out the transition rules of J , we
give an inkling of how the transition rules will be framed. In what follows we will
often refer to three distinct sections of the window (which, in a 2–track JTM,
resembles a 2 × 3 matrix) scanned by J ’s tape head: the “left column”, the
“middle column” and the “right column” of the window. We will “program” J
in the following way: While simulating each move of M on w, the middle column
of the window (currently being scanned) will always hold M ’s simulated state,
say q, (on the upper track) and the symbol currently being scanned by M , say b
(on the lower track). Having q and b under the “view” of the tape head (in the

Unconventional “Stateless” Turing–Like Machines 59

middle column3 of the current window, as in
x
a

q

b
y
c, for example), it is easy

for J to compute/simulate M ’s next move: Simply simulate M ’s transition rule
applicable in this “situation”, i.e. δ(q, b) = (q′, b′, L) (say), where L denotes left
direction of the tape head. How? By overwriting the current window (which is
x
a

q

b
y
c in our example) with an appropriate 3–letter string (say, with

q′
a

q

b′ y
c)

that produces the following effect, and after that, shifting the tape head one cell
to the left:

(i) b gets replaced with b′ as required, and
(ii) q′ (the simulated next state of M) is written on the left column (upper track)
of the window, exactly above the next symbol about to be scanned. (After the

left shift, the middle column of the “new” window will be exactly over
q′
a, as

required.)

We are now ready to describe the transition function δ′ of J . Recall that
δ′(X) maps X , a 3–letter string in the window being scanned (which would look

like
B
a

B

b
B
c , since J has two tracks on its tape), to a pair (X ′, D) where X ′ is

a 3–letter string that overwrites the string in the window, and D is a direction
(left or right) that tells where the head shifts in the next move.

1. For all symbols a, b, c ∈ Γ frame the following rule for J :

δ′(
B
a

B

b
B
c) = (

q0
a

B

b
B
c , L)

The above rule will be invoked only once (in the beginning) during our
simulation. This is a preprocessing step (0th move of J) which writes q0, the
initial state of M , on the upper track above the first symbol of input w and
shifts the head to the left.

2. For each rule
δ(q, b) = (q′, b′, L)

in M , where q, q′ ∈ Q; b, b′ ∈ Γ and L denotes left direction, frame the
following transition rule for J :

δ′(
x
a

q

b
y
c) = (

q′
a

q

b′ y
c, L)

for all a, c ∈ Γ and, for all x, y ∈ {B} ∪Q.
3. For each rule

δ(q, b) = (q′, b′, R)

in M , where q, q′ ∈ Q; b, b′ ∈ Γ and R denotes right direction, frame the
following transition rule for J :

δ′(
x
a

q

b
y
c) = (

x
a

q

b′ q′
c , R)

for all a, c ∈ Γ and, for all x, y ∈ {B} ∪Q.
3 The other two columns do not influence M ’s simulated next move.

60 J.J. Arulanandham

What remains now is to prove that the above construction is, indeed, correct.
We will prove that the machines M and J will have the same configuration after
each of them makes n moves, for any n ≥ 0. (This would automatically imply
that both of them produce the same output for the same input.) Of course, M
may not go on forever and would eventually halt if, at some point, no “next
move” is defined; J would follow suit, since J too would not have a (corre-
sponding) rule that dictates its next move. (Note that we do not count the
initial move of J as the “first move”, but as the “zeroth move”—a preprocess-
ing step.) The proof is an easy induction on the number of moves of J and M .
For the purposes of our proof, the configuration of a JTM will be described
simply with the string X1X2 . . . Xi−1qXiXi+1 . . .Xn, where X1X2 . . . Xn is the
portion of the tape (lower track only) between the leftmost and rightmost non-

blanks and
q

Xi is the symbol in the middle column of the scanning window
(the entire portions of the upper track, on the left and right of q, are omit-
ted). Consider the basis case, i.e. when n = 0 (M is yet to make a move,
and J has just executed the zeroth move). M ’s initial configuration will be
q0X1X2 . . . Xn, where X1X2 . . . Xn = w, the input string, and q0, the initial
state of M . J would have had X1BX2 . . .Xn as its initial configuration (that
is how we set it up), but, after its zeroth move, it will become q0X1X2 . . . Xn

(according to transition rule 1), as required. Now, let us suppose that the con-
figuration of both M and J is X1X2 . . .Xi−1qXiXi+1 . . . Xn after k moves.
Then, after the (k + 1)th move, the configuration of both M and J will be
either:

(i) X1X2 . . . q′Xi−1Y Xi+1 . . . Xn, if the transition rule forM is δ(q, Xi)=(q′, Y, L)
(J would have applied transition rule 2), or
(ii) X1X2 . . . Xi−1Y q′Xi+1 . . . Xn, if the transition rule for M is δ(q, Xi) =
(q′, Y, R)
(J would have applied transition rule 3), as required. �

4 Conclusion

It is traditionally known that Turing machines with only one state are not as
powerful as their counterparts with more number of states. We have shown that
this is no longer the case if we modify the TM a little: by adding an extra feature,
namely, reading/writing a 3–letter string (as opposed to reading/writing a single
symbol). While this result may turn out to be a product of mere theoretical
curiosity, we believe that JTMs could serve as normal forms that might make
proofs in computation theory simpler.

Acknowledgement

I thank my former colleague and friend, Mr. V. Ganesh Babu, for kindly reading
a draft of my paper and for his remarks.

Unconventional “Stateless” Turing–Like Machines 61

References

1. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Pearson Education, London (2006)

2. Turing, A.M.: On computable numbers with an application to the Entschei-
dungsproblem. Proc. London Math. Society 2(42), 230–265 (1936)

Polarizationless P Systems

with Active Membranes
Working in the Minimally Parallel Mode

Rudolf Freund1, Gheorghe Păun2, and Mario J. Pérez-Jiménez3

1 Institute of Computer Languages
Vienna University of Technology, Favoritenstr. 9, Wien, Austria

rudi@emcc.at
2 Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania, and
Department of Computer Science and Artificial Intelligence

University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

3 Department of Computer Science and Artificial Intelligence
University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

marper@us.es

Abstract. We investigate the computing power and the efficiency of P
systems with active membranes without polarizations, working in the
minimally parallel mode. Such systems are shown to be computationally
complete even when using only rules handling single objects in the mem-
branes and avoiding the division of non-elementary membranes. More-
over, we elaborate an algorithm for solving NP-complete problems, yet
in this case we need evolution rules generating at least two objects as
well as rules for non-elementary membrane division.

1 Introduction

P systems with active membranes basically use five types of rules: (a) evolution
rules, by which a single object evolves to a multiset of objects, (b) send-in, and (c)
send-out rules, by which an object is introduced in or expelled from a membrane,
maybe modified during this operation into another object, (d) dissolution rules,
by which a membrane is dissolved, under the influence of an object, which may
be modified into another object by this operation, and (e) membrane division
rules; this last type of rules can be used both for elementary and non-elementary
membranes, or only for elementary membranes. As introduced in [9], all these
types of rules also use polarizations for membranes, “electrical charges” +,−, 0,
controlling the application of the rules.

Systems with rules of types (a), (b), (c) were shown to be equivalent in com-
putational power with Turing machines [10], even when using only two polariza-
tions [4], while P systems using all types of rules were shown to be universal even
without using polarizations [1]. Another important class of results concerns the

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 62–76, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Polarizationless P Systems with Active Membranes 63

possibility of using P systems with active membranes to provide polynomial so-
lutions to computationally hard problems. Several papers have shown that both
decision and numerical NP-complete problems can be solved in a polynomial
time (often, even linear time) by means of P systems with three polarizations
[10], then the number of polarizations was decreased to two [3]. The systems
constructed for these solutions use only division of elementary membranes. At
the price of using division also for non-elementary membranes, the polarizations
can be removed completely [2].

All papers mentioned above apply the rules in the maximally parallel mode:
in each computation step, the chosen multiset of rules cannot be extended any-
more, i.e., no further rule could be added to this chosen multiset of rules in
such a way that the resulting extended multiset still could be applied. Recently,
another strategy of applying rules in parallel was introduced, the so-called min-
imal parallelism [5]: in each computation step, the chosen multiset of rules to
be applied in parallel cannot be extended by any rule out of a set of rules from
which no rule has been chosen so far for this multiset of rules in such a way
that the resulting extended multiset still could be applied (this is not the only
way to interpret the idea of minimal parallelism, e.g., see [6] for other possi-
bilities, yet the results elaborated in this paper hold true for all the variants
of minimal parallelism defined there). This introduces an additional degree of
non-determinism in the system evolution, but still computational completeness
and polynomial solutions to SAT were obtained in the new framework by using
P systems with active membranes, with three polarizations and division of only
elementary membranes.

In this paper we continue the study of P systems working in the minimally
parallel way, and we prove that the polarizations can be avoided, at the price of
using all five types of rules for computational completeness and even the division
of non-elementary membranes for computational efficiency. On the other hand,
in the proof for establishing computational completeness, in all types of rules we
can restrict their form to handling only single objects in the membranes (we call
this the one-normal form for P systems with active membranes).

2 Prerequisites

We suppose that the reader is familiar with the basic elements of Turing com-
putability [7], and of membrane computing [10]. We here, in a rather informal
way, introduce only the necessary notions and notation.

For an alphabet A, by A∗ we denote the set of all strings of symbols from
A including the empty string λ. A multiset over an alphabet A is a mapping
from A to the set of natural numbers; we represent a multiset by a string from
A∗, where the number of occurrences of a symbol a ∈ A in a string w represents
the multiplicity of a in the multiset represented by w. The family of Turing-
computable sets of natural numbers is denoted by NRE.

In our proofs showing computational completeness we use the characterization
of NRE by means of register machines. A register machine is a construct M =

64 R. Freund, G. Păun, and M.J. Pérez-Jiménez

(n, B, l0, lh, I), where n is the number of registers, B is a set of instruction labels,
l0 is the start label, lh is the halt label (assigned to HALT only), and I is a set of
instructions of the following forms:

– li : (ADD(r), lj , lk) add 1 to register r, and then go to one of the instruc-
tions labeled by lj and lk, non-deterministically chosen;

– li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract 1
from it and go to the instruction labeled by lj , otherwise go to the instruction
labeled by lk;

– lh : HALT the halt instruction.

A register machine M generates a set N(M) of numbers in the following
way: start with the instruction labeled by l0, with all registers being empty, and
proceed to apply instructions as indicated by the labels and by the contents of
registers. If we reach the halt instruction, then the number stored at that time
in register 1 is taken into N(M). It is known (e.g., see [8]) that in this way we
can compute all the sets of numbers which are Turing-computable, even using
register machines with only three registers as well as registers two and three
being empty whenever the register machine halts.

3 P Systems with Active Membranes

A P system with active membranes, of the initial degree n ≥ 1, is a construct of
the form Π = (O, H, μ, w1, . . . , wn, R, ho) where

1. O is the alphabet of objects ;
2. H is a finite set of labels for membranes;
3. μ is a membrane structure, consisting of n membranes having initially neutral

polarizations, labeled (not necessarily in a one-to-one manner) with elements
of H ;

4. w1, . . . , wn are strings over O, describing the multisets of objects placed in
the n initial regions of μ;

5. R is a finite set of developmental rules, of the following forms:
(a) [ha → v]eh, for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules);
(b) a[h]e1

h → [hb]e2
h , for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O

(in communication rules);
(c) [ha]e1

h → b[h]e2
h , for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O

(out communication rules);
(d) [ha]eh → b, for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O

(dissolving rules);
(e) [

h
a]e1

h
→ [

h
b]e2

h
[
h
c]e3

h
, for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O

(division rules for elementary or non-elementary membranes in reaction
with an object, being replaced in the two new membranes by possibly
new objects; the remaining objects may have evolved in the same step
by rules of type (a) and the result of this evolution is duplicated in the
two new membranes);

6. ho ∈ H or ho = env indicates the output region.

Polarizationless P Systems with Active Membranes 65

In all types of rules considered above, the labels of membranes are never
changed. All the rules of any type involving a membrane h constitute the set
Rh, and for each occurrence of a membrane labelled by h we consider different
copies of this set Rh. In the maximally parallel mode, in each step (a global
clock is assumed) we apply multisets of rules in such a way that no further
rule can be applied to the remaining objects or membranes. In each step, each
object and each membrane can be involved in only one rule. In the minimally
parallel mode, in each step, we choose a multiset of rules taken from the sets
assigned to each membrane in the current configuration in such a way that af-
ter having assigned objects to all the rules in this multiset, no rule from any
of the sets from which no rule has been taken so far, could be used in addi-
tion. In every mode, each membrane and each object can be involved in only
one rule, and the choice of rules to be used and of objects and membranes to
evolve is done in a non-deterministic way. For rules of type (a) the membrane
is not considered to be involved: when applying [ha → v]h, the object a can-
not be used by other rules, but the membrane h can be used by any number
of rules of type (a) as well as by one rule of types (b) – (e). In each step,
the use of rules is done in the bottom-up manner (first the inner objects and
membranes evolve, and the result is duplicated if any surrounding membrane is
divided).

A halting computation provides a result given by the number of objects
present in region ho at the end of the computation; this is a region of the system
if ho ∈ H (and in this case, for a computation to be successful, exactly one
membrane with label ho should be present in the halting configuration), or it is
the environment if ho = env.

A system Π is said to be in the one-normal form if the membranes have no
polarization (it is the same as saying that always all membranes have the same
polarization, say 0, which therefore is irrelevant and thus omitted) and the rules
are of the forms [ha → b]h, a[h]h → [hb]h, [ha]h → b[h]h, [ha]h → b, and
[ha]h → [hb]h[hc]h, for a, b, c ∈ O, such that a "= b, a "= c, b "= c.

The set of numbers generated in the minimally parallel way by a system Π is
denoted by Nmin(Π). The family of sets Nmin(Π), generated by systems with
rules of the non-restricted form, having initially at most n1 membranes and using
configurations with at most n2 membranes during any computation is denoted
by NminOPn1,n2((a), (b), (c), (d), (e)); when a type of rules is not used, it is not
mentioned in the notation. If any of the parameters n1, n2 is not bounded, then
it is replaced by ∗. If the systems do not use polarizations for membranes, then
we write (a0), (b0), (c0), (d0), (e0) instead of (a), (b), (c), (d), (e). When the sys-
tem Π is in the one-normal form, then we write NminOPn1,n2((a1), (b1), (c1),
(d1), (e1)).

When considering families of numbers generated by P systems with active
membranes working in the maximally parallel mode, the subscript min is re-
placed by max in the previous notations. For precise definitions, we refer to [10]
and to the papers mentioned below.

66 R. Freund, G. Păun, and M.J. Pérez-Jiménez

4 Computational Completeness

The following results are well known:

Theorem 1. (i) NmaxOP3,3((a), (b), (c)) = NRE, [10].
(ii) NmaxOP∗,∗((a0), (b0), (c0), (d0), (e0)) = NRE, [1].
(iii) NminOP3,3((a), (b), (c)) = NRE, [5].

In turn, the following inclusions follow directly from the definitions:

Lemma 1. NmodeOPn1,n2((a1), (b1), (c1), (d1), (e1)) ⊆
NmodeOPn1,n2((a0), (b0), (c0), (d0), (e0)) ⊆
NmodeOPn1,n2((a), (b), (c), (d), (e)),

for all n1, n2 ≥ 1, mode ∈ {max, min}.

We now improve the equalities from Theorem 1 in certain respects, starting with
proving the computational completeness of P systems with active membranes in
the one-normal form when working in the maximally parallel mode, and then
we extend this result to the minimal parallelism.

Theorem 2. For all n1 ≥ 5,

NmaxOPn1,∗((a1), (b1), (c1), (d1), (e1)) = NRE.

Proof. We only prove the inclusion

NRE ⊆ NmaxOP5,∗((a1), (b1), (c1), (d1), (e1)).

Let us consider a register machine M = (3, B, l0, lh, I) generating an arbitrary
set N(M) ∈ NRE. We construct the P system of initial degree 5

Π = (O, H, μ, ws, wh, w1, w2, w3, R, env),
O = {di | 0 ≤ i ≤ 5} ∪ {g, #, #′, p, p′, p′′, c, c′, c′′} ∪B ∪ {l′ | l ∈ B}
∪ {liu | li is the label of an ADD instruction in I, 1 ≤ u ≤ 4}
∪ {liu0 | li is the label of a SUB instruction in I, 1 ≤ u ≤ 4}
∪ {liu+ | li is the label of a SUB instruction in I, 1 ≤ u ≤ 6},

H = {s, h, 1, 2, 3},
μ = [s[1]1 [2]2 [3]3[h]h]s,

ws = l0d0, wα = λ, for all α ∈ H − {s},

with the rules from R constructed as described below.
The value stored in a register r = 1, 2, 3 of M , in Π is represented by the

number of copies of membranes with label r plus one (if the value of the register
r is k, then we have k + 1 membranes with label r). The membrane with label
h is auxiliary, it is used for controlling the correct simulation of instructions of
M by computations in Π . Each step of a computation in M , i.e., using an ADD
or a SUB instruction, corresponds to six steps of a computation in Π . We start

Polarizationless P Systems with Active Membranes 67

with all membranes being empty, except for the skin region, which contains the
initial label l0 of M and the auxiliary object d0. If the computation in M halts,
that is, the object lh appears in the skin region of Π , then we pass to producing
one object c for each membrane with label 1 present in the system, except one;
in this way, the number of copies of c sent to the environment represents the
correct result of the computation in M .

We now list the rules used in each of the six steps of simulating instructions
ADD and SUB, and finally we present the rules for producing the result of the
computation; in each configuration, only the membranes and the objects relevant
for the simulation of the respective instruction are specified. In particular, we
ignore the “garbage” object g, because once introduced it remains idle for the
whole computation.

The simulation of an instruction li : (ADD(r), lj , lk) uses the rules from
Table 1. The label object li enters into the correct membrane r (even if the
register r is empty, there is at least one membrane with label r) and in the
next step divides it. The object li2 exits the newly produced membrane, but g
remains inside; li2 will evolve three further steps, just to synchronize with the
evolution of the auxiliary objects du, u ≥ 0, and the auxiliary membrane h, so
that in the sixth step we end up with the label lj or lk of the next instruction
to be simulated present in the skin membrane, together with d0; note that the
number of copies of membrane r was increased by one.

Table 1. The simulation of an ADD instruction

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i] r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li1]r

[
r
g]

r
[
s
d1 → d2]s

[
s
d2 [

r
li1]r

[
r
g]

r
. . . [

h
]
h
]
s

3 [
r
li1] r

→ li2[r
]
r

d2[h
]
h
→ [

h
d3]h

[
s
li2 [

r
]
r
[
r

]
r
. . . [

h
d3]h

]
s

4 [
s
li2 → li3]s

[
h
d3]h

→ d4[h
]
h

[
s
li3d4[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

5 [
s
li3 → li4]s

[
s
d4 → d5]s

[
s
li4d5[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

6 [
s
li4 → lt]s

, [
s
d5 → d0]s

[
s
ltd0[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

t ∈ {j, k}

The auxiliary objects du, u ≥ 0, and the auxiliary membrane h are also used in
the simulation of SUB instructions; in step 4, there also are other rules to be used
in membrane h, introducing the trap object #, but using such rules will make the
computation never halt, hence, they will not produce an unwanted result.

The evolution of the auxiliary objects du, u ≥ 0, is graphically represented
in Figure 1; membrane h is only used in step 3, to send an object inside, and
in the next step, for sending an object out of it. On each arrow we indicate the
step, according to Table 1; the steps made by using rules of types (b) and (c)
are pointed out by drawing the respective arrows crossing the membranes, thus
suggesting the in/out actions.

The way the simulation of an ADD instruction works is depicted in Figure 2;
the division operation from step 2 is indicated by a branching arrow.

68 R. Freund, G. Păun, and M.J. Pérez-Jiménez

�

�

�

�

d3

d3 → #

→ #′

#′ → #

d2d1d0 d4 d5 d0� � � � � �1 2 3 4 5 6

h

Fig. 1. The evolution of the auxiliary objects

li

�

�

�

	

�

�

�

	

�

�

�

	

r

l′i

li1 g

li2

�

��� ���

�

� li3
� li4

lj/lk

�

r r

1

2

3

4 5

6

Fig. 2. The simlation of an ADD instruction

The simulation of an instruction li : (SUB(r), lj , lk) is done with the help
of the auxiliary membrane h. The object li enters a membrane r (there is at least
one copy of it) and divides it, and on this occasion makes a non-deterministic
choice between trying to continue as having register r non-empty or as having
it empty. If the guess has been correct, then the correct action is done (decre-
menting the register in the first case, doing nothing in the second case) and the
correct next label is introduced, i.e., lj or lk, respectively. If the guess has not
been correct, then the trap object # is introduced. For all membranes x of the
system we consider the rules [x# → #′]x, [x#′ → #]x, hence, the appearance
of # will make the computation last forever.

In Table 2 we present the rules used in the case of guessing that the register r
is not empty. Like in the case of simulating an ADD instruction, the auxiliary ob-
jects and membranes do not play any role in this case. The evolution of the objects
liu+ in the six steps described in Table 2 is depicted in Figure 3; when a dissolving
operation is used, this is indicated by writing δ near the respective arrow.

In step 2 we divide the membrane r containing the object l′i and the objects
li1+, li2+ are introduced in the two new membranes. One of them is immediately

Polarizationless P Systems with Active Membranes 69

Table 2. The simulation of a SUB instruction, guessing that register r is not empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i] r

[
s
d0 → d1]s

[
s
d1 [

r
l′i] r

. . . [
h

]
h
]
s

2 [
r
l′i] r

→ [
s
d1 → d2]s

[
s
d2[r

li1+]
r
[
r
li2+]

r

[
r
li1+]

r
[
r
li2+]

r
. . . [

h
]
h
]
s

3 [
r
li1+]

r
→ li3+ d2[h

]
h
→ [

h
d3]h

[
r
li2+]

r
→ li4+[

r
]
r

[
s
li3+li4+[

r
]
r
. . . [

h
d3]h

]
s

4 li3+[
r

]
r
→ [

r
g]

r
[
h
d3]h

→ d4[h
]
h

li4+[
r

]
r
→ [

r
li5+]

r
[
s
d4[r

li5+]
r
[
r
g]

r
. . . [

h
]
h
]
s

or [
s
li3+ → #]

s
, [

s
d4#[

r
]
r
. . . [

h
]
h
]
s

[
s
li4+ → #]

s

5 [
r
li5+]

r
→ li6+ [

s
d4 → d5]s

[
s
d5li6+[

r
]
r
. . . [

h
]
h
]
s

6 [
s
li6+ → lj]s

[
s
d5 → d0]s

[
s
ljd0[r

]
r
. . . [

h
]
h
]
s

li

�

�

�

�

�

�

�

�
��

���

li3+

�

�

g

�

	 li4+ li5+

li6+

lj

�

�

�

�

�

�

r

r r

r r

1

2

3 3δ

4

li3+ → #

4

li4+ → #

5 δ

6

l′i

li1+ li2+

Fig. 3. The simulation of a SUB instruction, guessing that the register is non-empty

dissolved, thus the number of copies of membrane r remains unchanged; the
objects li3+, li4+ are introduced in this step. In the next step (the fourth one
of the simulation), objects li3+, li4+ look for membranes r in the skin region. If
both of them find such membranes – and this is the correct/desired continuation
– then both of them enter such membranes; li3+ becomes g and li4+ becomes
li5+. If only one of them finds a membrane r, then the other one has to evolve
to object # in the skin membrane and the computation never halts.

If we had enough membranes r and li3+, li4+ went there, then in the next step
li5+ dissolves one membrane r thereby being changed to li6+; in this way, the

70 R. Freund, G. Păun, and M.J. Pérez-Jiménez

Table 3. The simulation of a SUB instruction, guessing that register r is empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i] r

[
s
d0 → d1]s

[
s
d1 [

r
l′i] r

. . . [
h

]
h
]
s

2 [
r
l′i] r

→ [
s
d1 → d2]s

[
s
d2 [

r
li10] r

[
r
li20]r

[
r
li10] r

[
r
li20]r

. . . [
h

]
h
]
s

3 [
r
li10] r

→ li30 d2[h
]
h
→ [

h
d3]h

[
s
li30li40 [

r
]
r

[
r
li20] r

→ li40[r
]
r

. . . [
h
d3]h

]
s

4 li30[r]r → [
r
g]

r
, [

h
d3]h

→ d4[h
]
h

[
s
li40d4[r

g]
r
. . . [

h
]
h
]
s

li40 waits
or li40[r

]
r
→ [

r
#]

r
[
s
d4[r

#]
r
. . . [

h
]
h
]
s

or li40[h
]
h
→ [

h
l′k]

h
[
h
d3 → #]

h
[
s
[
r
g]

r
. . . [

h
l′k#]

h
]
s

5 li40[h
]
h
→ [

h
l′k]

h
[
s
d4 → d5]s

[
s
d5[r

]
r
. . . [

h
l′k]

h
]
s

6 [
h
l′k]

h
→ lk[

h
]
h

[
s
d5 → d0]s

[
s
lkd0[r

]
r
. . . [

h
]
h
]
s

number of membranes r has successfully been decremented. In the sixth step,
li6+ finally becomes lj (simultaneously with regaining d0), and this completes
the simulation.

However, in step 2, instead of the rule [rl
′
i]r → [rli1+]r[rli2+]r we can use

the rule [rl
′
i]r → [rli10]r[rli20]r, with the intention to simulate the subtract

instruction in the case when the register r is empty – that is, only one membrane
with label r is present in the system. The rules used in the six steps of the
simulation are given in Table 3.

The six steps of the simulation of a SUB instruction when guessing the corre-
sponding register to be empty are shown in Figure 4, this time with the evolution
of the auxiliary objects being indicated, too. The arrows marked with # corre-
spond to computations which are not desired.

In this case, the auxiliary objects du, u ≥ 0, and the auxiliary membrane h
play an essential role. Until step 3 we proceed exactly as above, but now we
introduce the objects li30 and li40. In step 4, li30 then can enter the available
membrane r, there evolving to g. In this fourth step, there is a competition
between li40 and d3 for membrane h, but if li40 enters membrane h already in
this step, then the trap object # is produced here by the rule [hd3 → #]h.

If there is a second membrane r, i.e., if the guess has been incorrect, then
– to avoid the scenario described before – the rule li40[r]r → [r#]r has to be
used simultaneously with li30[r]r → [rg]r and [hd3]h → d4[h]h in the fourth
step, yet then the computation never ends, too. If there is no second membrane
r, then, in step 4, li40 has to wait unchanged in the skin region if we apply
li30[r]r → [rg]r and [hd3]h → d4[h]h in the desired way. Thus, the only way
not to introduce the object # is (i) not to have a second membrane r, (ii) to use
the rule [hd3]h → d4[h]h, thus preventing the use of the rule li40[h]h → [hl′k]h
already in the fourth step, and (iii) not sending li40 to the unique membrane r.
After having waited unchanged in the skin region during step 4, the object li40
in the next step should enter membrane h (if entering the unique membrane r,

Polarizationless P Systems with Active Membranes 71

li

�

�

�

	

�

�

�

	

�

�

�

	

li30

li10

l′i

li20

li40

�

��� ���

� �

�

�

�

	
g 	

�

�

�

	
#�

�

�

�

	

�
�

�
��

l′k lk�

�

�

�

	
d3

�

d4 d5 d0d2d1d0
� � � � � �1 2 3 4 5 6

h

d3 → #

#

4 5 h

r

4

#

33
r

4

2

r r

δ

r

1

Fig. 4. The simulation of a SUB instruction, guessing that the register is empty

it becomes # there), and finally, lk is released from membrane h, at the same
time when d0 appears again.

If the computation in M halts by reaching lh, i.e., if the object lh is introduced
in the skin region, we start to use the following rules:

lh[1]1 → [1l
′
h]1, [1l

′
h]1 → p, p[1]1 → [1p

′]1,
[1p

′]1 → [1p
′′]1[1c

′]1, [1p
′′]1 → p, [1c

′]1 → c′′, [sc
′′]s → c[s]s,

p[h]h → [hp′]h, [hp′]h → p.

The object lh dissolves one membrane with label 1 (thus, the remaining mem-
branes with this label are now as many as the value of register 1 of M), and gets
transformed into p. This object enters each membrane with label 1, divides it
and then reproduces itself by passing through p′ and p′′, thereby also dissolving
one membrane with label 1, and also produces a copy of the object c′′, which
immediately exits the system, thereby being changed into c.

At any time, the object p can also enter membrane h and then dissolve it.
The computation can stop only after all membranes with label 1 having been
dissolved (i.e., a corresponding number of copies of c has been sent out) and

72 R. Freund, G. Păun, and M.J. Pérez-Jiménez

�

�

�

	

�

�

�

	

�

�

�

	
p �

��
 ����
�

�
��

� c′′c′p′′

p′

δ

1

1 1

δ
c�out

�

�

�

	
l′hlh

� �

1

δ

�

�

�

	

�
�

�
�
�
��� �

��
�

�
���

h

p′

δ

Fig. 5. The end of computations

after the single membrane h having been dissolved, too, i.e., the evolution of
objects du, u ≥ 0, is also stopped. The function of this final module is described
in Figure 5.

In sum, we conclude N(M) = Nmax(Π).

Theorem 3 gives the same result as Theorem 3 from [1], with the additional
constraint to have evolution rules with exactly one object on the right-hand side
(neither producing more objects, nor erasing objects, as it is the case in [1]).

The previous proof can easily be changed in order to obtain the computational
completeness of P systems in the one-normal form also in the case of minimal
parallelism. Specifically, we can introduce additional membranes in order to avoid
having two or more evolution rules to be applied in the same region or one or
more evolution rules and one rule of types (b) – (e) which involve the same
membrane:

– Applying any of the rules [sli3+ → #]s and [sli4+ → #]s, in step 4 of the
simulation of SUB for the guess of a non-empty register, means introducing
the trap object and is the same for the fate of the computation as applying
all possible rules of that kind.

– Steps 5 and 6 for the auxiliary rules are performed in the skin region, in
parallel with steps of the main rules in the simulation of incrementing or
decrementing a register. This can be avoided by introducing one further
auxiliary membrane, h′, in the skin region, and replacing the rules [sd4 →
d5]s, [sd5 → d0]s (both of them from Rs) by the rules d4[h′]h′ → [h′d5]h′
and [h′d5]h′ → d0[h′]h′ . These rules are associated with membrane h′,
hence, they should be used in parallel with the rules from the skin region.

– A further case when the maximal parallelism is important in the previous
construction is in step 4 of simulating a SUB instruction for the guess that

Polarizationless P Systems with Active Membranes 73

the register is empty: if rule li40[h
]
h
→ [

h
l′k]

h
is used in step 4, then also

the rule [hd3 → #]h must be used. In the minimally parallel mode, this can
be ensured if we replace this latter rule by d3[h′′]h′′ → [h′′#]h′′ , where h′′ is
one further membrane, provided in the initial configuration inside membrane
h. In this way, the rule d3[h′′]h′′ → [h′′#]h′′ involves the new membrane
h′′, hence, it should be used in parallel with the rule li40[h]h → [hl′k]h. Of
course, we also need the rules [h′′# → #′]h′′ , [h′′#′ → #]h′′ , instead of the
corresponding rules from membrane h.

In this way, we obtain the following counterpart of Theorem 2 (note that we
use two further membranes, h′ and h′′):

Theorem 3. For all n1 ≥ 7,

NminOPn1,∗((as1), (bs1), (cs1), (ds1), (es1)) = NRE.

The previous systems can easily be modified in order to work in the accepting
mode: we introduce the number to be analyzed in the form of the multiplicity
of membranes with label 1 initially present in the skin membrane (for number
n we start with n + 1 membranes [1]1 in the system) and we work exactly
as above, with the final module now having only the task of dissolving the
auxiliary membrane with label h, thus halting the computation. Consequently,
all the previous results, for both minimally and maximally parallel use of rules,
are valid also for accepting P systems in the one-normal form.

5 Solving SAT by Polarizationless P Systems

We now turn our attention to applying P systems for deciding NP-complete
problems and give an efficient semi–uniform solution to the satisfiability prob-
lem by using P systems with polarizationless active membranes working in the
minimally parallel mode.

Theorem 4. The satisfiability of any propositional formula in the conjunctive
normal form, using n variables and m clauses, can be decided in a linear time
with respect to n by a polarizationless P system with active membranes, con-
structed in linear time with respect to n and m, and working in the minimally
parallel mode.

Proof. Let us consider a propositional formula ϕ = C1 ∧ . . . ∧ Cm such that
each clause Cj , 1 ≤ j ≤ m, is of the form Cj = yj,1 ∨ . . . ∨ yj,kj , kj ≥ 1, for
yj,r ∈ {xi,¬xi | 1 ≤ i ≤ n}. For each i = 1, 2, . . . , n, let us consider the two
substrings t(xi) and f(xi) of c1 . . . cm such that, with 1 ≤ j ≤ m,

t(xi) exactly contains the cj such that yj,r = xi for some r, 1 ≤ r ≤ kj ,
f(xi) exactly contains the cj such that yj,r = ¬xi for some r, 1 ≤ r ≤ kj .

Thus, t(xi) and f(xi) describe the sets of clauses which take the value true when
xi is true and when xi is false, respectively.

74 R. Freund, G. Păun, and M.J. Pérez-Jiménez

We construct the P system Π(ϕ) with the following components (the output
membrane is not necessary, because the result is obtained in the environment):

O = {ai, fi, ti | 1 ≤ i ≤ n} ∪ {cj , dj | 1 ≤ j ≤ m} ∪ {pi | 1 ≤ i ≤ 2n + 7}
∪ {qi | 1 ≤ i ≤ 2n + 1} ∪ {ri | 1 ≤ i ≤ 2n + 5} ∪ {b1, b2, y, yes, no},

H = {s, s′, p, q, r, 0, 1, 2, . . . , m},
μ = [s[s′ [p]p[0[q]q[r]r[1]1[2]2 . . . [m]m]0]s′]s,

wp = p1, wq = q1, wr = r1, w0 = a1,

ws = ws′ = λ, wj = λ, for all j = 1, 2, . . . , m.

The set of evolution rules, R, consists of the following rules:

(1) [pi → pi+1]p, for all 1 ≤ i ≤ 2n + 6,
[qi → qi+1]q, for all 1 ≤ i ≤ 2n,
[ri → ri+1]r, for all 1 ≤ i ≤ 2n + 4.
These rules are used for evolving counters pi, qi, and ri in membranes with
labels p, q, and r, respectively.

(2) [ai]0 → [fi]0[ti]0, for all 1 ≤ i ≤ n,
[fi → f(xi)ai+1]0 and [ti → t(xi)ai+1]0, for all 1 ≤ i ≤ n− 1,
[fn → f(xn)]0, [tn → t(xn)]0.
The goal of these rules is to generate the truth assignments of the n variables
x1, . . . , xn, and to analyze the clauses satisfied by xi and ¬xi, respectively.

(3) cj []j → [cj]j and [cj]j → dj , for all 1 ≤ j ≤ m.
In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j in
order to dissolve it and to send objects dj to membrane 0.

(4) [q2n+1]q → q2n+1[]q, [q2n+1 → b1]0.
The counter q produces an object b1 in each membrane 0.

(5) b1[]j → [b1]j and [b1] j → b2, for all 1 ≤ j ≤ m, [b2]0 → b2.
These rules allow to detect whether the truth assignment associated with a
membrane 0 assigns the value false to the formula (in that case, the mem-
brane 0 will be dissolved).

(6) [p2n+7]p → p2n+7[]p, [p2n+7]s′ → no[]s′ , [no]s → no[]s,
[r2n+5]r → r2n+5, [r2n+5]0 → y[]0,[y]s′ → yes, [yes]s → yes[]s.
These rules produce the answer of the P system.

The membranes with labels p, q, and r, with the corresponding objects pi, qi,
and ri, respectively, are used as counters, which evolve simultaneously with the
main membrane 0, where the truth assignments of the n variables x1, . . . , xn are
generated; the use of separate membranes for counters makes possible the correct
synchronization even for the case of the minimal parallelism. The evolution of
counters is done by the rules of type (1). In parallel with these rules, membrane 0
evolves by means of the rules of type (2). In odd steps (from step 1 to step 2n), we
divide the (non-elementary) membrane 0 (with fi, ti corresponding to the truth
values false, true, respectively, for variable xi); in even steps we introduce the

Polarizationless P Systems with Active Membranes 75

clauses satisfied by xi,¬xi, respectively. After 2n steps, all 2n truth assignments
for the n variables have been generated and they are encoded in membranes
labeled by 0. If a clause Cj is satisfied by the previously expanded variable, then
the corresponding object cj enters membrane j, by means of the first rule of
type (3), permitting its dissolution by means of the second rule of that type and
sending objects dj to membrane 0. This is done also in step 2n + 1, in parallel
with using the rules of type (1) and (4) for evolving membranes p, q, and r. In
step 2n + 2, the counters pi and ri keep evolving and the second rule of type (4)
produces an object b1 in each membrane 0.

After 2n+2 steps, the configuration C2n+2 of the system consists of 2n copies
of membrane 0, each of them containing the membrane q empty, the membrane
r with the object r2n+3, possible objects cj and dj , 1 ≤ j ≤ m, as well as copies
of those membranes with labels 1, 2, . . . , m corresponding to clauses which were
not satisfied by the truth assignment generated in that copy of membrane 0. The
membranes associated with clauses satisfied by the truth assignments generated
have been dissolved by the corresponding object cj . The membrane p contains
the object p2n+3, and membrane regions s′ and s are empty. Therefore, formula
ϕ is satisfied if and only if there is a membrane 0 where all membranes 1, 2, . . . , m
have been dissolved. The remaining rules allow for sending out an object yes
to the environment in step 2n + 8, and, if the formula is not satisfiable, then
the object no appears in step 2n + 9. In both cases, this is the last step of the
computation.

The system Π(ϕ) uses 9n+2m+18 objects, m+6 initial membranes, contain-
ing in total 4 objects, and 9n + 4m + 20 rules. The number of objects generated
by any object evolution rule is bounded by m+1. Clearly, all computations stop
(after at most 2n + 9 steps) and all give the same answer, yes or no, to the
question whether formula ϕ is satisfiable, hence, the system is weakly confluent.
These observations conclude the proof.

We can also design a deterministic P system Π(ϕ) working in minimally parallel
mode which decides the satisfiability of ϕ; to this aim, it is enough to have m
copies of the object b1 in each membrane 0 of the configuration C2n+2, which
can be obtained by replacing the rule [q2n+1 → b1]0 by the rule [q2n+1 → bm

1]0.
The system used in the proof of Theorem 4 is not in the one-normal form,

because some of the rules of type (b) in (2) are of the form [ha → u]h with u
being an arbitrary multiset, hence, it remains an interesting open problem to
find a polynomial solution to SAT by a system in the one-normal form.

Acknowledgements. The work of Gh. Păun was partially supported by Project
BioMAT 2-CEx06-11-97/19.09.06. The work of M.J. Pérez-Jiménez was sup-
ported by the project TIN2005-09345-C04-01 of the Ministerio de Educación y
Ciencia of Spain, co–financed by FEDER funds, and of the project of Excellence
TIC 581 of the Junta de Andalućıa. The authors also gratefully acknowledge the
useful comments of an unknown referee.

76 R. Freund, G. Păun, and M.J. Pérez-Jiménez

References

1. Alhazov, A.: P systems without multiplicities of symbol-objects. Information Pro-
cessing Letters 100, 124–129 (2006)

2. Alhazov, A., Pérez-Jiménez, M.J.: Uniform Solution to QSAT Using Polarization-
less Active Membranes. In: Vol. I of Proc. of the Fourth Brainstorming Week on
Membrane Computing, Sevilla (Spain), pp. 29–40 (January 30 - February 3, 2006)

3. Alhazov, A., Freund, R.: Membrane Computing, International Workshop, WMC5,
Milano, Italy, 2004, Selected Papers. In: Mauri, G., Păun, G., Pérez-Jiménez,
M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 81–
94. Springer, Heidelberg (2005)

4. Alhazov, A., Freund, R., Păun, Gh.: Computational completeness of P systems
with active membranes and two polarizations. In: Margenstern, M. (ed.) MCU
2004. LNCS, vol. 3354, pp. 82–92. Springer, Heidelberg (2005)

5. Ciobanu, G., Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: P systems with minimal
parallelism. Theoretical Computer Science (to appear)

6. Freund, R., Verlan, S.: A formal framework for P systems. In: Proceedings WMC
8, 2007 (to appear)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA (1979)

8. Minsky, M.: Computation – Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, NJ (1967)

9. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

10. Păun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

On One Unconventional Framework for

Computation

Lev Goldfarb

Faculty of Computer Science
University of New Brunswick

Fredericton, NB
goldfarb@unb.ca

http://www.cs.unb.ca/~goldfarb

Abstract. My main objective is to point out a fundamental weakness
in the conventional conception of computation and suggest a way out.
This weakness is directly related to a gross underestimation of the role
of object representation in a computational model, hence confining such
models to an unrealistic (input) environment, which, in turn, lead to “un-
realistic” computational models. This lack of appreciation of the role of
structural object representation has been inherited from logic and partly
from mathematics, where, in the latter, the centuries-old tradition is
to represent objects as unstructured “points”. I also discuss why the
appropriate fundamental reorientation in the conception of computa-
tional models will bring the resulting study of computation closer to the
“natural” computational constrains. An example of the pertinent, class-
oriented, representational formalism developed by our group over many
years—Evolving Transformation System (ETS)—is briefly outlined here,
and several general lines of research are suggested.

1 Introduction

Historically, computability theory has emerged within logic1, and so it is not
surprising that “logical” agenda continues to play an important part in its devel-
opment2. This origin has determined to a considerable extent the basic “logical
orientation” of the field, i.e. the kinds of questions that one might be asking
(computable vs. non-computable, etc.).3

1 E.g. Alan Turing proposed the Turing machine as a convenient mechanism for an-
swering question of whether satisfiability in the predicate calculus was a solvable
problem or not.

2 E.g. Stephen Cook [1]: “When I submitted the abstract for this paper in December
1970 my interest was in predicate calculus theorem proving procedures, and I had
not yet thought of the idea of NP completeness.”

3 In connection with this orientation of the field, it is useful to recall ideas of John
Von Neumann, one of the leading prewar logicians who was well aware of the original
Turing work and actually invited Turing to stay at the Institute for Advanced Studies
as his assistant (after Turing completed his Princeton dissertation): “We are very

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 77–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 L. Goldfarb

At the same time, already in his original paper, Turing had to face the issue of
representation, both the “data” representation (on the tape), i.e. the input “sym-
bol space”4, and the representation of the machine itself (machine instructions
and its states).

Following the original Turing’s considerations, related to “the process of [sym-
bol] recognition”, it is not difficult to see that if these “symbols” would be endowed
with more general structure—as is the case with all real-world “symbols”—the
structure of the corresponding “generalized Turing machine”, or “intelligent ma-
chine”, would have to be fundamentally modified in order to be able to deal with
such structured symbols. So, first of all, we are faced with the ubiquitous issue
of structural representation. Again, I would like to emphasize that, when dealing
with natural objects, the treatment of the issues related to the structural object
representation must precede the computational considerations, since the formal
structure of the latter should depend on the formal structure of the former: the
structure of object operations will determine the structure of the corresponding
basic “machine” operations. Perhaps an analogy may help. If we recall the concept
of a mathematical structure (e.g. group, vector space, topological space, partially
ordered set), we should favor the idea that the structure of the machine operating
on the data that is viewed as an element of a particular (fixed) mathematical struc-
ture should depend on the underlying operations postulated within this mathe-
matical structure. In other words, representational considerations should precede
computational ones.

However simple the above considerations may look, the looks are deceiving:
it turns out that so far mathematics (and logic) has not adequately addressed
the issue of structural object representation, for good reasons. I suggest that
these reasons are quite profound and have to do with the context within which
the development of structural representation should take place. This context,
of classes and induction, has never been adequately delineated neither within

far from possessing a theory of automata which deserves that name, that is, a purely
mathematical-logical theory. There exists today a very elaborate system of formal
logic and specifically, of logic as applied to mathematics. . . . About the inadequacies
[of logic], however, this may be said: Everybody who has worked in formal logic will
confirm that it is one of the technically most refractory parts of mathematics. The
reason for this is that it deals with rigid, all-or-none concepts The theory of
automata, of the digital, all-or-none type . . . is certainly a chapter in formal logic. It
would, therefore, seem that it will have to share this unattractive property of formal
logic.”[2].

4 “If we were to allow an infinity of symbols, then there would be symbols differing
to an arbitrary small extent. . . . The new observed squares must be immediately
recognizable by the computer. . . . Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset our
theory by adjoining these marked squares to the observed squares. If, on the other
hand, . . . [each of them is] marked by a sequence of symbols [i.e. by a structured
symbol], we cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. [He then considers symbols formed by
numeric sequences.]”[3, my emphasis]

On One Unconventional Framework for Computation 79

philosophy—in spite of continuous attention it attracted over many centuries—
nor within psychology, artificial intelligence, and information retrieval.

This paper is motivated by a recent development of the first such formalism
for structural representation, the Evolving Transformation System (ETS). The
reason I used adjective “first” has to do with the following considerations: despite
the common usage, strings and graphs cannot be considered as satisfactory forms
of structural representation. Briefly, a string, for example, does not carry within
itself enough representational information to allow for the inductive recovery of
the corresponding grammar, which, as it turns out, is a serious indication of the
inadequacy of the underlying representational formalism. Not surprisingly, the
development of such a radically different formalism as ETS is still in its initial
stages, and hence, in this paper, it is prudent to focus on the overall directions
of its development rather than on any concrete formal results.

I should also mention that the above reorientation in the conception of a com-
putational model is expected to bring it closer to a (structural) generalization of
the conventional mathematical structures, in which the basic formal/underlying
structure is postulated axiomatically.

2 On a Proper Approach to the Concept of Structural
Object Representation

Historically, mathematics has been the main, if not the only, “science of represen-
tation”, so it is not surprising that the lack of appreciation of the role of object
representation has been inherited from mathematics, where the centuries-old tra-
dition has been to represent objects as unstructured “points”. In this sense, the
underestimation of the role of object representation in a computational model
is also not surprising. But while the mainstream mathematics—having been iso-
lated from the problems arising in computer science—had no apparent impetus
to proceed with the necessary radical developments, computer science has no
such excuse. The concepts of data structure and abstract data type have been
“screaming” for such fundamental developments. As was mentioned in Intro-
duction, I believe the reasons for the lack of such developments within computer
science have to do with its historical roots in mathematical logic, whose devel-
opment was not at all motivated5 by the representation of “physical” objects
[4], [5].

First, I propose to proceed with the development of formalism for structural
representation via generalization of the most basic entities on which the entire
edifice of mathematics and natural sciences stands, i.e. via structural general-
ization of the natural numbers: at this stage, I don’t think we have a more
fundamental choice for our starting point. I do not have in mind here relatively
“minor” (historical) generalizations such as complex numbers, quaternions, etc.,
since such generalizations are still numeric-based. What I have in mind is more

5 I.e. considerably less so than is the case with mathematics, which always had to
address the concerns of physics.

80 L. Goldfarb

far-reaching generalization, based on the generalization of the Peano construc-
tive process in which a single simple successor operation is replaced by several
structural ones. Thus I am suggesting entities that are structured in a manner
shown in Figs. 1, 2.

Second, I suggest that the notion of structural representation can properly
be addressed only within the context of a class. The reasons have to do with
the following hypothesized ontology of objects. As we know, objects in nature
do not pop up out of nowhere but always take time to appear, and in each case
the way an object “appears” is similar to the way some other, “similar”, objects
appear, i.e. an object always appears as an element of some class of closely
related objects, be it an atom, a stone, a protein, or a stop sign. Moreover, an
object co-evolves also together with its class: there is an “invisible” permanent
“bond” between an object and its class.

The crux of the proposed informational view of the universe can be expressed
in the form of the first ontological postulate: in addition to the classes them-
selves, for each class there exists, in some form, (its) class representation, which
maintains the integrity of the class by guiding the generation of its new elements
(and which therefore evolves together with the class). One should keep in mind
that this postulate can be seen as a continuation of a very remarkable line of
thought going back to Aristotle, Duns Scotus, and Francis Bacon, among others.

The second ontological postulate deals with the closely interconnected issue
related to the nature of object representation: as is the case with a biological or-
ganism, any object in nature exists along with its formative/generative history,
which is recoverable from the above class representation. Hence the “similar-
ity” of objects should now be understood as the “similarity” of their formative
histories. Since it is the object’s formative history that reveals its similarity or
dissimilarity with other objects, this formative history must be captured in the
object’s “representation” (which is, in a sense, a generalization the fact that all
biological organisms store their developmental information). Actually, it is not
difficult to see that the two postulates are closely related, so that one “leads” to
the other.

Consistent with the above two postulates, one should approach the task of
developing a formalism for structural representation as that of developing a
class-oriented representational formalism6, which would automatically ensure
that the formalism will be suitable for the purposes of inductive learning—since
the object representation would carry much more information about its class
representation—and consequently for the purposes of AI in general.

It is useful to emphasize that the development of such an informational for-
malism should not wait for the verification of the above hypotheses: for one
thing, no existing informational formalism insisted on any underlying hypoth-
esis about the informational structure of the universe. I believe, however, that
in contrast to such practices, it is important to state up front an informational
hypothesis which would clarify and inform the development of the corresponding
informational formalism.

6 My papers [4], [5] are recommended as clarifying related issues.

On One Unconventional Framework for Computation 81

In what follows, I will proceed under the assumption that the above two pos-
tulates are adopted, at least as far as the development of formalism for structural
representation is concerned. Again, I would like to emphasize the importance of
such adoption: without the appropriate guiding considerations, the very notion
of object representation becomes far too ambiguous, as can be seen from its
development so far. For example, strings and graphs are not appropriate models
for structural representation, since, as mentioned above, neither a string nor a
graph carry within itself sufficient information for the inductive recovery of the
class from which it is supposed to come. This is, in part, a consequence of the
situation when none of the above two postulates have been adopted.

One more point regarding these postulates. If we recall Georg Cantor’s con-
ception of the set as “the multitude that might be thought as oneness”, we can
see that the most natural way to conceive the multitude as one is to view these
objects as elements of one class (specified via some generative mechanism, see
section 4). Thus, within the proposed “computational” setting, the underlying
formal structures come from those of classes.

3 The Price of Relying on Conventional Discrete
Representations

In this section, I want to address briefly the issue why the representation should
be of major concern when developing a computational model. First of all, I
assume (correctly or incorrectly) that the main objective of the present series of
conferences is to converge on the concept of computation that would be viable not
just within the “classical”, i.e. “logical”, setting but also in the natural sciences
in general.

The main problem with the conventional representations, such as strings,
graphs, etc., is that they do not incorporate within themselves any particular
(generative) structure that might be associated with their formation. However, as
postulated above (see the two postulates in section 2), this generative/formative
structure must be an integral part of an object’s identity, and when absent creates
an unrealistic and ambiguous situation as to this identity. Such representational
deficiency is obviously impossible to overcome. Indeed, for a string abbaca,
there is simply no way to know the sequence of operations that was responsi-
ble for the string formation and, potentially, there are exponentially many of
them. As a consequence, from the very beginning we are critically handicapped
in regards to our ability to discover the underlying generative structure, and
no computational setting would be able to overcome this representational defi-
ciency. To repeat, no amount of algorithmic maneuvering can recover the missing
representational information.

One might think that there is a simple way out of this situation: embed the
necessary formative information (via some tags) into the representation, end of
the story. However, this is a typical representational kludge, as opposed to a
scientific approach: we have not gotten wiser neither about structural object
representation, nor about the concept of “formative history”.

82 L. Goldfarb

So now we come to a considerably less trivial question: What is a general
formalism for structural representation that would also explicate the notion of
structural generativity as its integral part? Note that conventional computational
formalisms, for example Chomsky’s generative grammars, have not addressed
this issue simply because they had implicitly assumed that strings are legiti-
mate forms of representation, so that this more fundamental representational
issue have not even appeared on the horizon (in spite of the fact that in this
particular case Chomsky, from the very beginning, had emphasized the impor-
tance of generativity). Of course, one can excuse these early developments since
at the time of their emergence, 1930s to 1950s, the serious representational is-
sues, could not have appeared on the horizon; but now, at the beginning of the
21st century—when all kinds of applications, starting from general search en-
gines (such as Google) and biological databases, all the way to various robotic
applications “beg” for structural representations—the story is quite different.

Thus, the price of relying on conventional discrete representations is that
the more fundamental, underlying, representational formalism remained in the
dark, which, in turn, prevented the development of a scientifically much more
satisfactory and definitive framework for computation, including the realization
of the full potential of many interesting ideas such as, to take a recent example,
the membrane computing.

For a discussion of the inherent, or structural limitations of the two main con-
ventional formalisms—vector space, or numeric, and logical—see [4], [5]. Inciden-
tally, it is these inherent limitation of the numeric (representational) formalism
that, I believe, are responsible for the predominance of statistical over structural
considerations in machine learning, pattern recognition, data mining, informa-
tion retrieval, bioinformatics, cheminformatics, and many other applied areas.
The question is not whether the appropriate statistical considerations should play
some role in these areas, the obvious answer to which is “yes, of course”, but,
as I emphasized above, whether, at present—when we lack any satisfactory for-
malism for structural representation—we should be focusing on the development
of new statistical techniques for the conventional formalisms that are inherently
inadequate for dealing with classes (and hence, with the class-oriented needs of
the above areas).

4 A Brief Sketch of the ETS Formalism

Unhappily or happily, the structure of this formalism has absolutely no analogues
to compare it with, despite the fact that its main entities, “structs”, may have a
superficial resemblance to some other known discrete objects such as, for example,
graphs, which is useful to keep in mind. Also, in view of limited space, in what fol-
lows I restrict myself to informal descriptions, while the formal definitions can be
found in [6], Parts II and III. The most important point to keep in mind is that,
in the formalism, all objects are viewed and represented as (temporal) structural
processes, in which the basic units are structured events, each responsible for trans-
forming the flow of several “regular” processes (see Figs. 1, 2).

On One Unconventional Framework for Computation 83

4.1 Primitive Transformations

The first basic concept is that of a primitive transformation, or primitive event,
or simply primitive, several of which are depicted in Fig. 1. In contrast to the ba-
sic units in conventional formalisms, this concept “atomic” to the ETS formalism
is relatively non-trivial, carrying both semantic and syntactic loads. It stands for a
fixed “micro-event” responsible for transforming one set of adjacent/interacting
processes, called initial processes, into another set of processes, called terminal
processes (in Fig. 2, both are shown as lines connecting primitives). In other words,
the concept of primitive transformation encapsulates that of a “standard”/fixed
interaction7 of several processes, where each belongs to a particular class of pri-
mal processes, or a primal class8. One can assume that the processes involved
are “periodic” and the event is responsible for their partial or complete modifi-
cation into another set of periodic processes. The formal structure of the event is
such that it does not depend on the concrete initial (or concrete terminal) pro-
cess, as long as each of the processes involved belongs to the same (fixed) primal
class of processes depicted in Fig. 1 as a small solid shape at the top (or at the
bottom) of the event. As one can see, at this, basic, (or 0th), stage of representa-
tion9, the structure of the initial and terminal processes is suppressed, as is the
internal structure of the transforming event itself, and what’s being captured by
the formal structure is the “external” structure of the event.

Fig. 1. Pictorial illustration of three primitives. The first subscript of a primitive refers
to the class of primitives all sharing the same structure, e.g. π2b and π2d . The initial
classes are marked as various shapes on the top, while the terminal classes are shown
as shapes on the bottom: each shape stands for a particular class of processes. The
only concrete processes—i.e. elements of these classes—identified in the figure as the
initial processes of the primitive π2b with label b = 〈 c1

i , c2
j , c3

k 〉 , where cs
t is the

tth process from primal class Cs, s = 1, 2, 3 .

Since all of nature is composed of various temporal processes, examples of the
above events are all around us: e.g. elementary particle collision, formation of
a two-cell blastula from a single cell (initial process is the original cell and the
terminal processes are the resulting two cells), collision of two cars, the event
associated with the transforming effect on the listener’s memory of the sentence

7 The internal structure of such event/interaction is undisclosed.
8 The concept of class permeates all levels of consideration.
9 In this paper, I discuss only a single-stage version of ETS. For multi-stage version see

[6], Part IV.

84 L. Goldfarb

“Alice and Bob had a baby” (initial processes are Alice and Bob and the termi-
nal processes are Alice, Bob, and the baby), etc., where each mentioned event
transforms the “flow” of the corresponding stable/regular processes involved.

4.2 Structs

The second basic concept is that of a struct formed by a (temporal) sequence
of the above primitive events, as shown in Fig. 2. It should be easy to see how
the temporal process of Peano construction of natural numbers (see Fig. 3) was
generalized to the construction of structs: the single “structureless” unit out of
which a number is built was replaced by multiple structural ones. An immediate
and important consequence of the distinguishability (or multiplicity) of units in
the construction process is that we can now see which unit was attached and
when. Hence, the resulting (object) representation for the first time embodies
both temporal and structural information in the form of a formative, or gener-
ative, object history recorded as a series of (structured) events. This was one of
the basic driving motivations for the development of ETS, while the other main
motivation was the development of a unified class-oriented representational for-
malism that would satisfy the needs of a large variety of information-processing
areas as well as natural sciences.

Fig. 2. Two illustrative examples of (short) structs

4.3 Struct Assembly

One of the basic operations on structs is struct assembly (as depicted in Fig. 4),
which relies on the events shared by the structs involved. This operation allows
one to combine in one struct several separately observed, but typically overlap-
ping, structs (e.g. those representing several facial features such as the eyes and
the nose). In particular, the overlap of several structs representing several actual
processes captures a “non-interfering” interaction of these processes.

It is not difficult to see now the fundamental difference between a struct and,
for example, a string: the main difference has to do with the temporal nature

On One Unconventional Framework for Computation 85

Fig. 3. The single primitive involved in the ETS representation of natural numbers,
and three structs representing the numbers 1, 2, and 3

of ETS representation, which allows one to “compare” any objects based on
their “formative history”. The latter information is simply not available in all
conventional forms of representation.

Thus, to repeat, the ETS object representation captures the object’s forma-
tive/generative history which, for the first time, brings considerable additional
information into the object representation. I should add that, from the applied
point of view, the adjective “formative” does not (and cannot) refer to the ob-
ject’s actual formative history, since, in many cases, it is not accessible to us,
but rather to a particularly chosen application mode of approaching/recording
it, i.e. to the mode of struct construction selected by the application developers.

4.4 Level 0 Classes

The third basic concept is that of a class. Even within the basic representational
stage—the only one I discuss here—each class10 is also viewed as possibly multi-
leveled. A single-level class representation is specified by means of a single-
level, or level 0, class generating system, which details the stepwise mode
of construction of the class elements.11 Each (non-deterministic) step in such
a system is specified by a set of (level 0) constraints. Each constraint—also a
major concept, which not introduced here—is a formal specification of a family of
structs sharing some structural “components” in the form of common substructs.
During a step in the construction process, the struct that is being attached
(at this step) to the part of the class element that has been assembled so far
must satisfy one of the constraints for this step. To be more accurate, in the
definition, it is assumed that each such step can be preceded by a step executed
by the “environment”, i.e. by some other class generating system “intervening” or
“participating” in the construction process (see Fig. 5). Thus, quite appropriately
and realistically, a change in the environment may result in a class change,

10 Here, I do not include the primal classes, which are assumed to be of undisclosed
structure.

11 Note that since we began with level 0, it cannot recurse to any lover level; level 1 is
built on top of level 0; level 2 is built on top of level 1; etc. Also note the difference
between a level and a stage (see the next subsection): levels refer to those of classes
and appear within a single representational stage.

86 L. Goldfarb

Fig. 4. Three structs and their assembly. Note that the second link connecting prim-
itives π3k and π2g in the assembly comes from σ1 (but not from σ3 , despite the
delineation of σ3 with a bold line).

without an attendant change in the class generating system itself. Such a concept
of class admits the effects of the environment in a “natural” manner.

4.5 Level 1 Structs

Suppose that an agent has already learned several level 0 classes, which together
form the current level 0 class setting. Then, when representing objects, the agent
has an access to a more refined form of object representation than a plain level
0 struct: it can now see if this struct is in fact composed of several level 0 class
elements (each belongs to one of the classes in level 0 class setting, see Fig. 6).
This leads to the concept of the next level (level 1) struct, which provides extra

On One Unconventional Framework for Computation 87

Fig. 5. Pictorial representation of a generic two-step generative “unit” in the construc-
tion of a class element: a step by the environment (bottom shaded primitives in the
second struct, added to the first one) followed by a step made by the class generating
system (substruct βj in the third struct attached to the second struct)

Fig. 6. Simplified pictorial representation of a level 1 struct in the contracted form:
dots stand for primitives and solid lines delineate level 0 class elements ci’s

representational information as compared to the underlying level 0 struct in the
form of the appropriate partition of the previous level (level 0) struct.

88 L. Goldfarb

4.6 Higher Level Classes

In the (recursive) k-level version of the class representation, for k ≥ 2, each
step is associated with a set of level (k − 1) constraints. However, during the
construction process, level (k−1) struct that is being attached (at this step) to
the previously constructed part must now be composed only out of level (k−2)
admissible class elements12 in a manner satisfying one of the constraints for this
step. Figure 7 illustrates this construction process for level 1 class element.

For a level 2 class element this element is an output of a level 2 (or three-
levels) class generating system at each step of its construction, the relevant part
is assembled out of several level 1 class elements in accordance with one of the
constraints specified for this step.

Fig. 7. Illustration of a generic two-step generative unit in the construction of some
level 1 class element. Dots stand for primitives, and solid lines delineate level 0 class
elements, which now serve as simplest construction units. A step by the environment
(bottom left gray addition in the second struct) is followed by a step made by a level
1class generating system itself (struct delineated by the dotted line).

5 Some Initial Computational Questions Arising Within
the ETS Formalism

For simplicity, I discuss only a basic single-stage computational “agenda” within
the ETS formalism, which can be stated in the following form: Given an ab-
stract delineation of a family of multi-level classes (or class generating systems)
and given several 0-level (“training”) structs from a class belonging to the given
family, the goal is to “extract” the corresponding class generating system.

In other words, I suggest that within such (inductive) framework, the com-
putational theory is aimed at developing the theory and techniques that would
allow one, first, to preprocess (or partition, or “mark up”) the input structs in
12 Each of those must come from a class belonging to a (previously learned or given)

set of level (k − 2) classes, comprising level (k − 2) class setting.

On One Unconventional Framework for Computation 89

a consistent manner, based on the structure of the given family of multi-level
classes; and then one can proceed to the extraction of the underlying class gen-
erating system.

So first of all, one would need to develop a corresponding structural theory,
which could be thought of as a “structural” generalization of the Chomsky’s lan-
guage hierarchy. As in the case of Chomsky hierarchy, such a theory would allow
one to restrict the above problem to a particular (structural) family of classes.
The development of such a hierarchy should probably proceed along the lines
somewhat similar to those followed by Chomsky, with the following quite natural
adjustment: within the hierarchy, each family of classes should be introduced via
the appropriate restriction on the set of admissible constraints—which are the
ETS analogues of the production rules—involved in the specification of the class.
However, it is also important to emphasize the differences between the ETS and
the conventional string (and graph hierarchies), and such differences concern not
just the presence of levels in ETS. When defining a conventional, for example
Chomsky, hierarchy, one is not treating a string as a form of object representation
as understood above. This results, on the one hand, in a wider range of admis-
sible production rules (not all are meaningful from the representational point
of view), and on the other hand, in a variety of qualitatively different machines
associated with each family of languages (e.g. deterministic/nondeterministic).
There are reasons to believe that, in the case of ETS formalism, in view of the
temporal form of representation, the situation is more palatable.

Next, based on such a structure theory, one would need to develop techniques
for the above class related (structural) preprocessing, or partitioning, of the
structs in a given (training) set of structs. Even this task is highly non-trivial,
since the tiling of each given struct must be accomplished relying on the admis-
sible previous level class elements only (see Fig. 6). The final stage is related to
the construction of the corresponding class representation.

It is understood that, in the meantime, to proceed with various applications,
one does not need to wait for the development of a full-fledged structural theory,
since in each concrete application, the corresponding family of classes can readily
be specified.X

Thus, it should be clear that in contrast to the conventional computational
models—where, as was mentioned above, the defining agenda was logical—I
propose that it is the (structural) inductive agenda that should now drive the
development of the computational framework. This proposal is not really surpris-
ing, given that the new framework is aimed at supporting a continuous dynamic
interaction between the “machine” and various natural environments, where, as
was hypothesized above, the temporal/structural nature of object representation
is ubiquitous.

6 Conclusion

I hinted that it might be prudent for some researchers in computation to add to
their research interests a new area that we called Inductive Informatics, which
can be thought of as a reincarnation of a four-hundred-year-old Francis Bacon’s

90 L. Goldfarb

project of putting all sciences on firm inductive footing, with the attendant
restructuring of the basic formal language and methodology. In hindsight, it ap-
pears that the major obstacle has been the lack of a classification-oriented—or
which appears to be the same thing “structural”—representational formalism.
Our proposed version of such formalism is a far-reaching, structural, general-
ization of the numeric representation, and in that sense it is much closer to
mathematics than the logic, which was suggested by von Neumann [2] to be a
desirable direction. Moreover, with the appearance of such a formalism, the con-
cept of class representation, for the first time, becomes meaningful, and it also
becomes quite clear that it is the intrinsic incapability of the conventional repre-
sentational formalisms to support this fundamental concept that is responsible
for our previous failure to realize Bacon’s vision.

In addition to the new theoretical horizons that are being opened up within
new (event-based) representational formalisms, the other main reason why such
formalisms should be of interest to researchers in computation has to do with
the immediate practical benefits one can derive from their various applications in
machine learning, pattern recognition, data mining, information retrieval, bioin-
formatics, cheminformatics, and many other applied areas. The validity of the
last statement should become apparent if one followed carefully the above point
regarding the new and rich aspect of object representation—i.e. the object’s for-
mative history—that now becomes available within the ETS formalism.

Acknowledgment. I thank Oleg Golubitsky for a discussion of the paper and
Ian Scrimger for help with formatting.

References

1. Cook, S.A.: The complexity of theorem proving. In: Laplante, P. (ed.) Great Papers
in Computer Science, vol. 2, West Publishing Co. St. Paul, Minneapolis (1996)

2. Neumann, von J.: The general and logical theory of automata. In: Pylyshyn, Z.W.
(ed.) Perspectives in the Computer Revolution, pp. 99–100. Prentice-Hall, Engle-
wood Cliffs, New Jersey (1970)

3. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. In: Laplante, P. (ed.) Great Papers in Computer Science, pp. 303–
304. West Publishing Co. St. Paul, Minneapolis (1996)

4. Goldfarb, L.: Representational formalisms: What they are and why we haven’t had
any. In: Goldfarb, L. (ed.) What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/∼goldfarb/ETSbook/ReprFormalisms.pdf

5. Goldfarb, L.: On the Concept of Class and Its Role in the Future of Machine Learn-
ing. In: Goldfarb, L. (ed.) What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/∼goldfarb/ETSbook/Class.pdf

6. Goldfarb, L., Gay, D., Golubitsky, O., Korkin, D.: What is a structural represen-
tation? A proposal for an event-based representational formalism. In: Goldfarb, L.
(ed.) What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/∼goldfarb/ETSbook/ETS5.pdf

http://www.cs.unb.ca/~goldfarb/ETSbook/ReprFormalisms.pdf
http://www.cs.unb.ca/~goldfarb/ETSbook/Class.pdf
http://www.cs.unb.ca/~goldfarb/ETSbook/ETS5.pdf

Computing Through Gene Assembly

Tseren-Onolt Ishdorj1,3 and Ion Petre1,2

1 Computational Biomodelling Laboratory
Department of Information Technologies

Åbo Akademi University, Turku 20520 Finland
{tishdorj,ipetre}@abo.fi

2 TUCS, Turku 20520 Finland
3 Research Group on Natural Computing

Department of CS and AI, Sevilla University
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract. The intramolecular gene assembly model, [1], uses three
molecular recombination operations ld, dlad, and hi. A computing model
with two contextual recombination operations del and trl , which are
based on ld and dlad, respectively, is considered in [6] and its computa-
tional power is investigated. In the present paper, we expand the comput-
ing model with a new molecular operation such as cpy - copy. Then we
prove that the extended contextual intramolecular gene assembly model
is both computationally universal and efficient.

1 Introduction

There have been proposed two formal models to explain the gene assembly pro-
cess in ciliates: intermolecular model, for instance in [8], and intramolecular
model, for instance in [1]. They both are based on so called “pointers” - short
nucleotide sequences (about 20 bp) lying on the borders between coding and
non-coding blocks. Each next coding block starts with a pointer-sequence re-
peating exactly the pointer-sequence in the end of the preceding codding block
from the assembled gene. It is supposed that the pointers guide the alignment
of coding blocks during the gene assembly process. The intramolecular model
proposes three operations: ld (loop with direct pointers), hi (hairpin loop with
inverted pointers), dlad (double loop with alternating direct pointers).

The context sensitive variants of the intramolecular operations dlad and ld
have been considered in [6]. The accepting contextual intramolecular recom-
bination (AIR) system using the operations translocation based on (dlad) and
deletion based on (ld) has been proved to be equivalent in power with Turing
machine.

In the present paper, we expand the set of contextual intramolecular oper-
ations with a new operation: copy cpyp. Intramolecular copy operation is first
considered in [14]. The extended intramolecular recombination model with three
types of contextual operations translocation, deletion, and copy computing along
a single string is as powerful as Turing machine, and efficient enough to solve
NP-complete problems (in particular, SAT) in polynomial time.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 91–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 T.-O. Ishdorj and I. Petre

No ciliate-based efficient algorithm for intractable problems has been pre-
sented in the literature so far. This makes the efficiency result in this paper
novel in the theory of ciliate computation.

A particularly interesting feature of the system is that the recombination
operations are applied in a maximally parallel manner.

To solve an instance of SAT, we encode the problem into a string. Then during
the recombination steps, the encoded problem (propositional formula) is du-
plicated by copy operation along the string. Meanwhile, the truth-assignments
attached to the propositional formula are constructed. In the end, all possible
truth-assignments are generated in a linear number of steps, and each truth-
assignment is checked to see whether it satisfies the encoded formula.

The universality result of [6] uses a number of copies of a given substring along
the working string in order to start a computation. By extension of the model
with the copy operation, the necessary substrings will be generated during the
computation instead of making the working string as full storage in advance as
in [6]. This saves on the size and complexity of the encoding.

2 Preliminaries

We assume the reader to be familiar with the basic elements of formal languages
and Turing computability [13], DNA computing [12], and computational com-
plexity [10]. We present here only some of the necessary notions and notation.

Using an approach developed in a series of works (see [9], [11], [2], and [7])
we use contexts to restrict the application of molecular recombination opera-
tions, [12], [1]. First, we give the formal definition of splicing rules. Consider an
alphabet Σ and two special symbols, #, $ /∈ Σ. A splicing rule (over Σ) is a
string of the form r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ Σ∗. (For a maximal
generality, we place no restriction on the strings u1, u2, u3, u4. The cases when
u1u2 = λ or u3u4 = λ could be ruled out as unrealistic.)

For a splicing rule r = u1#u2$u3#u4 and strings x, y, z ∈ Σ∗ we write
(x, y) �r z if and only if x = x1u1u2x2, y = y1u3u4y2, z = x1u1u4y2, for
some x1, x2, y1, y2 ∈ Σ∗. We say that we splice x, y at the sites u1u2, u3u4,
respectively, and the result is z. This is the basic operation of DNA molecule
recombination.

A splicing scheme [5] is a pair R = (Σ,∼), where Σ is the alphabet and
∼, the pairing relation of the scheme, ∼⊆ (Σ+)3 × (Σ+)3. Assume we have
two strings x, y and a binary relation between two triples of nonempty words
(α, p, β) ∼ (α′, p, β′), such that x = x′αpβx′′ and y = y′α′pβ′y′′; then, the
strings obtained by the recombination in the context from above are z1 =
x′αpβ′y′′ and z2 = y′α′pβx′′. When having a pair (α, p, β) ∼ (α′, p, β′) and
two strings x and y as above, x = x′αpβx′′ and y = y′α′pβ′y′′, we consider
just the string z1 = x′αpβ′y′′ as the result of the recombination (we call it one-
output-recombination), because the string z2 = y′α′pβx′′, we consider as the
result of the one-output-recombination with the respect to the symmetric pair
(α′, p, β′) ∼ (α, p, β).

Computing Through Gene Assembly 93

A rewriting system M = (S, Σ ∪ {#}, P) is called a Turing machine (we use
also abbreviation TM), [13], where: (i) S and Σ∪{#}, where # /∈ Σ and Σ "= ∅,
are two disjoint sets referred to as the state and the tape alphabets; we fix a
symbol from Σ, denote it as and call it “blank symbol”; (ii) Elements s0 and
sf of S are the initial and the final states respectively; (iii) The productions
(rewriting rules) of P are of the forms

(1) sia −→ sjb; (2) siac −→ asjc; (3) sia# −→ asj #; (4) csia −→ sjca;
(5) #sia −→ #sj a; (6) sfa −→ sf ; (7) asf −→ sf , where si and sj are
states in S, si "= sf , and a, b, c are in Σ.

The TM M changes from one configuration to another one according to its set
of rules P . We say that the Turing machine M halts with a word w if there exists
a computation such that, when started with the read/write head positioned at
the beginning of w, the TM eventually reaches the final state, i.e., if #s0w#
derives #sf# by successive applications of the rewriting rules (1)–(7) from P .
The language L(M) accepted by the TM M is the set of words on which M
halts. If TM is deterministic, then there is the only computation possible for
each word. The family of languages accepted by Turing machines is equivalent
to the family of languages accepted by deterministic Turing machines.

The satisfiability problem, SAT, is a well known NP-complete problem. It asks
whether or not for a given propositional formula in the conjunctive normal form
there is a truth-assignment of variables such that the formula assumes the value
true. The details of SAT are considered in Section 4.

3 The Contextual Intramolecular Operations

The contextual intramolecular translocation and deletion operations are the gen-
eralizations of dlad and ld operations, respectively, as defined in [6]. We consider
a splicing scheme R = (Σ,∼). Denote core(R) = {p | (α, p, β) ∼ (γ, p, δ) ∈ R for
some α, β, γ, δ ∈ Σ+}.

Definition 1. The contextual intramolecular translocation operation with re-
spect to R is defined as trlp,q(xpuqypvqz) = xpvqypuqz, where there are such
relations (α, p, β) ∼ (α′, p, β′) and (γ, q, δ) ∼ (γ′, q, δ′) in R, that x = x′α,
uqy = βu′ = u′′α′, vqz = β′v′, xpu = x′′γ, ypv = δy′ = y′′γ′ and z = δ′z′.

We say that operation trlp,q is applicable, if the contexts of the two occurrences
of p as well as the contexts of the two occurrences of q are in the relation ∼.
Substrings p and q we call pointers. In the result of application of trlp,q strings
u and v, each flanked by pointers p and q, are swapped. If from the non-empty
word u we get by trlp,q operation word v, we write u =⇒trlp,q

v and say that v
is obtained from u by trlp,q operation. The translocation is depicted in Fig. 1.

Definition 2. The contextual intramolecular deletion operation with respect to
R is defined as delp(xpupy) = xpy, where there is a relation (α, p, β) ∼ (α′, p, β′)
in R that x = x′α, u = βu′ = u′′α′, and y = β′y′.

94 T.-O. Ishdorj and I. Petre

p p q� q� � � � ��� �� ��¤$...

p p q� q� � � � �� � �� ��¤ $...

trlp,q(x)=y

x

y

�trl
p

,q

(p) (’p ’) (q) (’q ’)� � � � � � � �and~ ~

... ...

... ...

Fig. 1. Translocation operation

In the result of applying delp, the string u flanked by two occurrences of p is
removed, provided that the contexts of those occurrences of p are in the relation
∼. If from a non-empty word u we obtain a word v by delp, we write u =⇒delp

v
and say that the word v is obtained from u by delp operation. See Fig. 2 A.

(x)=ycpyq

x

y

�c
p
y

q

where (q$) ($q ’)� �~

q q� $ ��$

�p p� � � ���$p p� � � ���$

�

x

y

�d
e
l
p

delp(x)=y (p) (’p ’)where � � � �~

A. B.

� �p

� q $ q �

Fig. 2. A. Deletion and B. Copy operations

We introduce here an additional operation the contextual intramolecular copy.

Definition 3. The contextual intramolecular copy operation with respect to R is
defined as cpyq(xquqy) = xquuqy, where there is a relation (α, q, β) ∼ (α′, q, β′)
in R that x = x′α, u = β = α′, y = β′y′.

As a result of applying cpy q, the substring u flanked by two occurrences of q
is duplicated. The substring u supposed to be duplicated itself must be also
the following substring of the first pointer q and the preceding substring of the
second occurrence of q. If from the non-empty word u we obtain a word v by
cpyq, we write u =⇒cpy

q
v and say that the word v is obtained from u by cpyq

operation. The copy operation is depicted in Fig. 2 B.
We use the next notations:

trl = {trlp,q | p, q ∈ core(R)},
del = {delp | p ∈ core(R)},
cpy = {cpyp | p ∈ core(R)}.

Then we define the set of all contextual intramolecular operations as follows:
R̃ = trl ∪ del ∪ cpy .

Definition 4. Let a triplet Rop = (Σ,∼, op) be a splicing scheme that an oper-
ation op ∈ R̃ performs only in the contexts defined by the set of splicing relations
in Rop. We say that Rop is an operation class of the splicing scheme ∼ for the
operation op ∈ R̃.

Computing Through Gene Assembly 95

We consider the parallelism for the intramolecular recombination model. In-
tuitively, a number of operations can be applied in parallel to a string if the
applicability of each operation is independent of the applicability of the other
operations. The parallelism in intramolecular gene assembly was initially studied
in a different setting in [4]. We recall the definition of parallelism following [4]
with a small modification adapted to our model.

Definition 5. Let S ⊆ R be a set of k rules and let u be a string. We say that
the rules in S can be applied in parallel to u if for any ordering ϕ1, ϕ2, . . . , ϕk

of S, the composition ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1, is applicable to u.

In our proof below we use a different notion of parallelism. We introduce it here
is the form of the maximally parallel application of a rule to a string. First, we
define the working places of a operation ϕ ∈ R̃ on a given string where ϕ is
applicable.

Definition 6. Let w be a string. The working places of a operation ϕ ∈ R̃ for
w is a set of substrings of w written as Wp(ϕ(w)) and defined by

Wp(trlp,q(w)) = {(w1, w2) ∈ Sub(w) | trlp,q(xw1yw2z) = xw2yw1z}.
Wp(delp(w)) = {w1 ∈ Sub(w) | delp(xpw1py) = xpy}.
Wp(cpyp(w)) = {w1 ∈ Sub(w) | cpyp(xw1y) = xw1w1y}.

Definition 7. Let w be a string. The smallest working places of an operation
ϕ ∈ R̃ for w is a subset of Wp(ϕ)(w) written as Wps(ϕ(w)) and defined by

Wps(trlp,q(w)) = {(w1, w2) ∈ Wp(trlp,q(w)) | for all w′
1 ∈ Sub(w1) and

w′
2 ∈ Sub(w2) and (w′

1, w
′
2) "= (w1, w2),

(w′
1, w

′
2) /∈ Wp(trlp,q(w))}.

Wps(delp(w)) = {w1 ∈ Wp(delp(w)) | for all w′
1 ∈ Sub(w1),

and w′
1 "= w1, w

′
1 /∈ Wp(delp(w))}.

Wps(cpyp(w)) = {w1 ∈ Wp(cpyp(w)) | for all w′
1 ∈ Sub(w1),

and w′
1 "= w1, w

′
1 /∈ Wp(cpyp(w))}.

Definition 8. Let Σ be a finite alphabet and R̃ the set of rules defined above.
Let ϕ ∈ R and u ∈ Σ∗. We say that v ∈ Σ∗ is obtained from u by applying ϕ in a
maximally parallel way, denoted u =⇒max

ϕ v, if u = α1u1α2u2 . . . αkukαk+1, and
v = α1v1α2v2 . . . αkvkαk+1, where ui ∈ Wps(ϕ)(w) for all 1 ≤ i ≤ k, and also,
αi /∈ Wp(ϕ(w)), for all 1 ≤ i ≤ k + 1.

Note that a rule ϕ ∈ R̃ may be applied in parallel to a string in several different
ways, as shown in the next example.

Example 1. Let trlp,q be the contextual translocation operation applied in the
context (x1, p, x2) ∼ (x3, p, x4) and (y1, q, y2) ∼ (y3, q, y4). We consider the string
u = x1px2$1y1qy2$2x3px4$3x3px4$4y3qy4.

96 T.-O. Ishdorj and I. Petre

Note that there are two occurrences of p with context x3 and x4. We can
obtain two different strings from u by applying trlp,q in a parallel way as follows:

u =⇒max
trlp,q

v′ where v′ = x1px4$3x3px4$4y3qy2$2x3px2$1y1qy4.

u =⇒max
trlp,q

v′′ where v′′ = x1px4$4y3qy2$2x3px4$3x3px2$1y1qy4.

Here only the second case satisfies the definition of maximally parallel application
of trlp,q because it applies for the smallest working place.

Example 2. Let delp be the contextual deletion operation applied in the relation
of (x1x2, p, x3) ∼ (x3, p, x1), and consider the string u = x1x2px3px1x2p x3px1.
The unique correct result obtained by maximally parallel application of delp to
u is x1x2px3px1x2px3px1 =⇒max

delp
x1x2px1x2px1.

4 Computational Efficiency and Universality

Definition 9. An extended accepting intramolecular recombination (eAIR) sys-
tem is a tuple G = (Σ,∼, R̃, α0, wt) where R̃ is the set of recombination oper-
ations, α0 ∈ Σ∗ is the start word, and wt ∈ Σ+ is the target word. If α0 is
not specified, we omit it. The operation classes of splicing scheme Rop = (Σ,∼
, op), op ∈ R̃ are defined. Then the operations are applied in a sequentially or
a maximally parallel manner according to the operation classes. The language
accepted by G is defined by L(G) = {w ∈ Σ∗ | α0w =⇒∗

Rop∈R̃
wt}.

We use the extended accepting intramolecular recombination (eAIR) systems as
decision problem solvers. A possible correspondence between decision problems
and languages can be done via an encoding function which transforms an instance
of a given decision problem into a word, see, e.g., [3].

Definition 10. We say that a decision problem X is solved in time O(t(n)) by
extended accepting intramolecular recombination systems if there exists a family
A of extended AIR systems such that the following conditions are satisfied:

1. The encoding function of any instance x of X having size n can be computed
by a deterministic Turing machine in time O(t(n)).

2. For each instance x of size n of the problem one can effectively construct,
in time O(t(n)), an extended accepting intramolecular recombination system
G(x) ∈ A which decides, again in time O(t(n)), the word encoding the given
instance. This means that the word is accepted if and only if the solution to
the given instance of the problem is YES.

Theorem 1. SAT can be solved deterministically in linear time by an extended
accepting intramolecular recombination system constructed in polynomial time
in the size of the given instance of the problem.

Computing Through Gene Assembly 97

Proof. Let us consider a propositional formula in the conjunctive normal form,
ϕ = C1 ∧ · · · ∧ Cm, such that each clause Ci, 1 ≤ i ≤ m, is of the form Ci =
yi,1 ∨ · · · ∨ yi,ki , ki ≥ 1, where yi,j ∈ {xk, x̄k | 1 ≤ k ≤ n}.

We construct an extended accepting intramolecular recombination system

G = (Σ,∼, R̃, YES), where

Σ = {$i | 0 ≤ i ≤ m + 1} ∪ {xi, xī, 〈i, 〈̄i, 〉i, 〉̄i, †i, †ī | 1 ≤ i ≤ n}
∪ {fi | 0 ≤ i ≤ n + 1} ∪ {T, F,∨, Y, E, S},

R = (Σ,∼),

R̃ = {trl 〈i,〉i
, trl 〈ī,〉ī

, delfi
, del†i

, del†ī
| 〈i, 〉i, 〈̄i, 〉̄i, fi, †i, †ī ∈ core(R), 1 ≤ i ≤ n}

∪ {cpyfi
| fi ∈ core(R), 0 ≤ i ≤ n− 1} ∪ {del$i

| $i ∈ core(R), 1 ≤ i ≤ m}
∪ {delE | E ∈ core(R)},

and the operation classes Rtrl , Rdel , and Rcpy are defined below.
We encode each clause Ci as a string bounded by $i in the following form:

ci = $i∨〈σ(jb)xσ(jb)〉σ(jb)∨· · ·∨〈nσ(jb)xnσ(jb)〉nσ(jb) ∨$i, where b ∈ {0, 1}, σ(j1) =
j, σ(j0) = j̄, and xj stands for variable xj , while xj̄ stands for negated variable
x̄j , 1 ≤ j ≤ n, in the formula ϕ. The instance ϕ is encoded as:

δ = $0c1 . . . cm$m+1.

In order to generate all possible truth-assignments for all variables x1, x2, . . . , xn

of the formula, we consider a string of the form

γ = †1〈1T 〉1†1†1̄〈1̄F 〉1̄†1̄ . . . †n〈nT 〉n†n†n̄〈n̄F 〉n̄†n̄.

Here T and F denote the truth-values true and false, respectively. Then m
copies of γ are attached to the end of the encoded formula, leading to β = δγm.

If we have a propositional formula ϕ′ = (x1 ∨ x̄2) ∧ (x1 ∨ x2), then

δ′ = $0$1 ∨ 〈1x1〉1 ∨ 〈2̄x2̄〉2̄ ∨ $1$2 ∨ 〈1x1〉1 ∨ 〈2x2〉2 ∨ $2$3, and
γ′ = †1〈1T 〉1†1†1̄〈1̄F 〉1̄†1̄†2〈2T 〉2†2†2̄〈2̄F 〉2̄†2̄.

We use the following notations:

γ = γ1γ2 . . . γn where γi = γ
(1)
i γ

(0)
i , γ

(1)
i = †i〈iT 〉i†i, γ

(0)
i = †ī〈̄iF 〉̄i†ī.

γi,n = γiγi+1 . . . γn.γ
(bi,j)
i,j = γ

(bi)
i γ

(bi+1)
i+1 . . . γ

(bj)
j , bi,j = bibi+1 . . . bj ∈ {0, 1}+,

1 ≤ i < j ≤ n, γ1,1 = γ1, γn,n = γn, γ1,0 = λ, γn+1,n = λ, Γ ∈ Sub(γ),
αi,n = fifi+1 . . . fn, ᾱi,n = fnfn−1 . . . fi, 0 ≤ i ≤ n,

αn+1,n+1 = ᾱn+1,n+1 = fn+1, σ(i1) = i, σ(i0) = ī, B ∈ {T, F}.

The input string π1 (we call it in-string) containing the encoded propositional
formula ϕ is of the form:

π1 = YEᾱ1,n+1f0α1,n+1βᾱ1,n+1f0α1,n+1ES.

98 T.-O. Ishdorj and I. Petre

The size of the input is quadratic, |π1| ≤ 4nm+14n+3m+12. Hence the system
is constructible by a deterministic Turing machine in time O(nm) in the size of
the given instance of the problem.

Roughly speaking, the main idea of the algorithm by which the eAIR system
solves SAT is as follows: (i) We generate all possible truth-assignments on the
in-string according to the variables of the given instance of the propositional
formula, while the encoded propositional formula with the attached Γ is copied,
in linear time. (ii) Then each truth-assignment is assigned to its attached formula
in the maximally parallel way. Step (iii), we check the satisfiability of the formula
with regard to the truth-assignments. (iv) Finally, eAIR system decides to accept
or not the input string π1. We stress here that the recombination steps are guided
very much by the classes of splicing schemes and by the contexts of rules defined
in the splicing relations. The phases (i), (ii), (iii), and (iv) of the computation
are illustrated in Fig. 3.

�1

cpy
fk-1

del
†
k

trl
‹,› del

$ del
E

�3k-2
�3k �3n+1 �3n+2 YES

�3k-1

del
f
k

(i) Generation p. (ii) Assigning p. (iii) Checking p. (iv) Decision p.

1 k n� �

Fig. 3. A scheme of the algorithm

Let us start the computation accomplishing the above steps.

(i) Generating truth-value assignments. The generation of all possible truth-
assignments takes 3n steps. The computation starts applying operation cpyf0

(it is easy to observe that no other operations are applicable on the in-string
at the first step), and then del†1 and del†1̄ are applied parallel, following this
step operation delf1

applies. The next combination of three modules are applied
automatically one after other in a cyclic order:

cpyfi
=⇒ del†i+1

, del†i+1
=⇒ delfi+1

, 0 ≤ i ≤ n− 1.

We emphasize here that the repeated pointers used in cpyfi
are the closest

to each other, because of the maximal parallel application of the rule and the
definition of the operation cpyp.

(1) The copy operation cpy fi
duplicates the substrings si flanked by the re-

peats of fi.

αfisifiα
′ =⇒max

cpy
fi

αfisisifiα
′, α, α′ ∈ Σ∗, 0 ≤ i ≤ n− 1.

The contexts for the cpyfi
operation to be applied are

Computing Through Gene Assembly 99

– (ᾱi+1,n+1, fi, si) ∼ (si, fi, αi+1,n+1) ∈ Rcpy ,

where si = αi+1,n+1δ(γ
(b1,i)
1,i γi+1,n)mᾱi+1,n+1.

At each 3k− 2th (1 ≤ k ≤ n) step, the in-string contains substrings of the form:

fn+1fn . . . fi+1fifi+1 . . . fnfn+1δ(γ
(b1,i)
1,i γi+1,n)mfn+1fn . . . fi+1fifi+1 . . . fnfn+1.

Each substring si flanked by repeated fi contains only one δΓ m part. The
only possible rule to be applied in the context of this substring is cpyfi

for the
repeats fi, i = 3k− 3 (at this step there no rule is applicable from each Rtrl and
Rdel , which can be checked out later on). No copy using cpyfj

, j "= 3k−3, j ≥ 0,
may occur, because no fj, j < 3k − 3, has remained in the string; on the other
hand, at this moment there is no pattern of the form fj+1fjfj+1, j > 3k− 3, to
which cpy fj

is applicable.
The copy cpy fi

is applied in a maximally parallel way on the string for its
smallest working places. As the result of this step, each substring flanked by fi

is copied as the following form:

fi+1fifi+1 . . . fn+1δ(γ
(b1,i)
1,i γi+1,n)mfn+1 . . . fi+1

fi+1 . . . fn+1δ(γ
(b1,i)
1,i γi+1,n)mfn+1 . . . fi+1fifi+1.

The substring flanked by fi-s satisfies as the smallest working place for cpyfi
,

but cpyfi
still can not apply to it because, on the one hand, by the definition

of cpyfi
, it applies to a substring si flanked by fi-s and on the other hand, the

substring si has to contain only one δΓ m part as the relations in Rcpy constrain
it. But it is not the case with the above smallest working place. There are two
δΓ m parts between the repeats of fi. There are splicing relations for the repeats
of fi in Rdel but we will check later that which are not satisfied on the current
string.

(2) Thus, the next deletion operations del†i
and del†ī

apply to the current in-
string. It is the 3k−1th (1 ≤ k ≤ n) step. The deletion del† is applied maximally
parallel on the 2k copies of Γ m. By deletion del†i

(resp. del†ī
), the truth-values

〈iT 〉i (resp. 〈̄iF 〉̄i) are deleted wherever the contexts of del† are satisfied.

α†σ(ib)〈σ(ib)B〉σ(ib)†σ(ib)α
′ =⇒max

del†σ(ib)
α†σ(ib)α

′, α, α′ ∈ Σ∗, 1 ≤ i ≤ n.

del†ī
: (fi−1αi,n+1δ(γ

(b1,i−1)
1,i−1 γi,n)j−1γ

(b1,i−1)
1,i−1 γ1

i , †ī, 〈̄iF 〉̄i) ∼
(〈̄iF 〉̄i, †ī, γi+1,n(γ(b1,i−1)

1,i−1 γi,n)m−jᾱi,n+1αi,n+1) ∈ Rdel where bi ∈
{0, 1}, 1 ≤ j ≤ m, 1 ≤ i ≤ n, γ1,1 = γ1, γn,n = γn, γ1,0 = γn+1,n = λ.

The context says that the substring †ī〈̄iF 〉̄i, which is going to be deleted,
has to be preceded by a substring which is bordered by fi−1 in the left
side, and followed by a substring of the form fn+1 . . . fifi . . . fn+1. One
more crucial constraint is that all γj , j < i, have to be broken already
and γj , j > i, have not been processed up to now. del† applies to m
copies of Γ attached to δ, namely, it applies to all Γ in the maximally
parallel way on the in-string which satisfies the contexts.

100 T.-O. Ishdorj and I. Petre

del†i
: (ᾱi,n+1αi,n+1δ(γ

(b1,i−1)
1,i−1 γi,n)j−1γ

(b1,i−1)
1,i−1 , †i, 〈iT 〉i) ∼

(〈iT 〉i, †i, γ0
i γi+1,n(γ(b1,i−1)

1,i−1 γi,n)m−jᾱi,n+1fi−1) ∈ Rdel ,
where bi ∈ {0, 1}, 1 ≤ j ≤ m, 1 ≤ i ≤ n, γ1,1 = γ1,
γn,n = γn, γ1,0 = λ, γn+1,n = λ.

A substring †i〈iT 〉i with its preceding substring bordered by fi−1 in the
right side is deleted by del†i

.

Note that since there is no splicing relation for the repeats of † in the classes
of the splicing schemes except Rdel , only del† applies to the repeats of †. Up

to now, 2i truth-assignments of the form γ
(b1)
1 γ

(b2)
2 . . . γ

(bi)
i γi+1 . . . γn, bi ∈ {0, 1}

have been generated on the in-string.

(3) At the 3k−1th (1 ≤ k ≤ n) step of the computation, the deletion operation
delfi

is allowed. It applies for the repeats of fi and deletes one copy of fi with
one fi−1 if it is available between those fi.

αfifi−1fiα
′ =⇒max

delfi
αfiα

′, α, α′ ∈ Σ∗, 1 ≤ i ≤ n.

The next two contexts are in the splicing scheme for delfi
:

– (ᾱi+1,n+1, fi, fi−1) ∼ (fi−1, fi, αi+1,n+1δ(γ
b1,i

1,i γi+1,n)m) ∈ Rdel ,

– (δ(γ(b1,i)
1,i γi+1,n)mᾱi+1,n+1, fi, fi−1) ∼ (fi−1, fi, αi+1,n+1) ∈ Rdel .

Remember that at the previous two steps delfi
was not applicable because γi

had not been operated. Since γi was operated at the previous step by del†i
, now

delfi
can be applied. Here the subscripts are shifted from i to i− 1.

αfifiα
′ =⇒max

delfi
αfiα

′, where

– (δ(γ(b1,i)
1,i γi+1,n)mᾱi+1,n+1, fi, fi) ∼ (fi, fi, αi+1,n+1) ∈ Rdel

where αn+1,n+1 = ᾱn+1,n+1 = fn+1.

After n repeats of the cyclic iteration (1) =⇒ (2) =⇒ (3), it ends at the
3nth step and all truth-assignments have been generated completely. Now the
in-string is of the form:

π3n = YE(fn+1fnfn+1δΓ
mfn+1fnfn+1)2

n

ES.

We enter to the next phase as follows.

(ii) Assigning the truth-values to the variables. The truth-values (truth-
assignments) are assigned to each variable (to each clause) of the propositional
formula by the next translocation operations:

α′〈σ(ib)xσ(ib)〉σ(ib)α
′′〈σ(ib)B〉σ(ib)α

′′′ =⇒max
trl 〈σ(ib),〉σ(ib)

α′〈σ(ib)B〉σ(ib)α
′′〈σ(ib)xσ(ib)〉σ(ib)α

′′′,

where b ∈ {0, 1}, σ(i1) = i, σ(i0) = ī, 1 ≤ i ≤ n, α′, α′′, α′′′ ∈ Σ∗. We have the
next two splicing relations in Rtrl .

Computing Through Gene Assembly 101

– (∨, 〈σ(ib), xσ(ib)〉σ(ib) ∨ u†σ(ib)
) ∼ (xσ(ib)〉σ(ib) ∨ u†σ(ib)

, 〈σ(ib), B〉σ(ib)†σ(ib)
v)

– (〈σ(ib)xσ(ib), 〉σ(ib),∨u†σ(ib)〈σ(ib)B) ∼ (∨u†σ(ib)〈σ(ib)B, 〉σ(ib), †σ(ib)v),
where u "= u′fn+1u

′′, v "= v′fn+1v
′′, u′, u′′, v′, v′′ ∈ Σ∗.

By the application of trl 〈i,〉i
, every variable xi flanked by 〈i and 〉i in each

clause cj and the corresponding truth-value T (true) flanked by 〈i and 〉i is
swapped if such correspondence exists. Similarly, for assigning the truth-value
F (false) to xī, the contents of 〈̄ixī〉̄i and 〈̄iF 〉̄i are swapped by trl 〈ī,〉ī

. Thus,
all truth-assignments are assigned to their attached propositional formula at
the same time in a single step. The truth-values assigned to a fixed formula
should not be mixed from the different assignments. That is why the constraints
u "= u′fn+1u

′′, v "= v′fn+1v
′′ are required in the context. It is the 3n + 1th step.

(iii) Checking the satisfiability of the propositional formula. If a clause ck is satis-
fied by a truth-assignment, then at least one substring of type 〈σ(ib)B〉σ(ib) exists
in ck as $kxk〈σ(ib)B〉σ(ib)yk$k. However, if the propositional formula ϕ is satisfied
by a truth-assignment, then each clause cl of ϕ is of the form $lxl〈σ(ib)B〉σ(ib)yl$l,
xl, yl ∈ Σ∗, 1 ≤ l ≤ m. Then an encoding of the propositional formula satisfied
by an assignment is of the form:

$0$1x1〈σ(ib)B〉σ(ib)y1$1$2x2〈σ(ib)B〉σ(ib)y2$2 . . . $mxm〈σ(ib)B〉σ(ib)ym$m$m+1,
where σ(i1) = i, σ(i0) = ī, 1 ≤ i ≤ n, xj , yj ∈ Σ∗, 1 ≤ j ≤ m.

The deletion operation del$i
applies to the in-string in maximally paral-

lel, and deletes the clauses which contain at least a truth-value of the form
$iα

′〈σ(jb)B〉σ(jb)α
′′$i as follows:

α$iα
′〈σ(jb)B〉σ(jb)α

′′$iα
′′′ =⇒max

del$i
α$iα

′′′,

– ($i−1, $i, xi〈σ(jb)B〉σ(jb)yi) ∼ (xi〈σ(jb)B〉σ(jb)yi, $i, $i+1) ∈ Rdel ,
xi, yi ∈ Σ∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The checking phase has been done at the 3n + 2th step of the computation.
(iv) Deciding. At the end of the computation, we obtain some sequences of the
form $0$1$2 . . . mm+1 on the in-string if there exist truth-assignments which
satisfy the formula ϕ. Then delE applies to the in-string YEu$1$2 . . . $m−1$mvES
for the repeats of E.

YEu$1$2 . . . $m−1$mvES =⇒del E YES, where

– (Y, E, $) ∼ ($, E, S) ∈ Rdel , $ = u$1$2 . . . $m−1$mv, for some u, v ∈ Σ∗.

Thus, at 3n + 3th step, the target string YES is reached.
If no sequence $1$2 . . . $m is obtained with the in-string, then the computation

just halts at the 3n+2th step since no rule is possible to apply from now on, hence,
π0 is not accepted by G. Thus, the problem ϕ is solved in a linear time. �
We recall here the following result of [6].
Theorem 2. [6] For any deterministic Turing machine M = (S, Σ ∪ {#}, P)
there exists an intramolecular recombination system GM = (Σ′,∼, α0, wt) and a
string πM ∈ Σ′∗ such that for any word w over Σ∗ there exists kw ≥ 1 such that
w ∈ L(M) if and only if w#5πkw

M #2 ∈ L(GM).

The next theorem proves that eAIR system is computationally universal.

102 T.-O. Ishdorj and I. Petre

Theorem 3. For any deterministic Turing machine M = (S, Σ∪{#}, P), there
exists an extended intramolecular recombination system GM = (Σ′,∼, R̃, α0, wt),
and a string πM ∈ Σ′∗ for any word w ∈ L(M) iff w#3πM#2 ∈ L(GM).

Proof. Since the string can be extended by cpy during the recombination pro-
cesses in eAIR, with this proof we do not need to reserve as many copies of an
encoded TM rule as we did in Theorem 2. Instead, an encoding of a rewriting
rule is duplicated by cpy before it is used. Then one copy of the encoding is used
by a translocation operation while another copy is reserved as initial state. In a
manner similar to Theorem 2, for a Turing machine M we construct an extended
intramolecular recombination system

GM = (Σ′,∼, R̃, α0, wt), where
Σ′ = S ∪Σ ∪ {#} ∪ {$i | 0 ≤ i ≤ m + 1},
α0 = #3s0, wt = #3sf#3,

R̃ = {trlp,q, delp, cpyp | p, q ∈ core(R)}.

We also consider the string

πM = $0(
∏

1≤i≤m

p,q∈Σ∪{#}

$ipviq$i)$m+1, πM ∈ Σ′∗.

The classes of splicing relations Rop∈R̃ = (Σ′,∼, op) are constructed as follows:

Rcpy : (puiqw
′$0w

′′, $i, pviq) ∼ (pviq, $i, $i+1), (1)
Rtrl : (c, p, uiqd) ∼ ($i, p, viqp), (2)

(pui, q, d) ∼ ($ipvi, q, pviq$i), (3)
where c, d, p, q ∈ Σ ∪ {#},

Rdel : ($i, p, uiq) ∼ (uiq, p, viq$i), (4)

(#3sf#, #, #) ∼ ($m+1, #, #). (5)

If a word w ∈ Σ∗ is accepted by Turing machine M , then associated eAIR
GM works as follows:

#3s0w#3πM#2 =⇒∗
Rop∈R̃

#3sf#3πM#2 =⇒del# #3sf#3.

Where we refer to the subsequence #3s0w#3 as the “data”, and to the sub-
sequence πM#2 as the “program”. A rewriting rule i : u → v ∈ P of M is
simulated in three subsequent steps (cpy =⇒ trl =⇒ del) in GM .

Step 1. When left-hand side of a rule i : ui → vi appears in the form puiq in
data, the corresponding encoding of the right-hand side of the rule pviq flanked
by $i-s in the program is copied ($ipviqpviq$i). The copy cpy$i

performs in the
contexts defined by relation (1) as follows,

xpuiqw
′$0w

′′$ipviq$i$i+1y =⇒cpy $i
xpuiqw

′$0w
′′$ipviqpviq$i$i+1y.

Computing Through Gene Assembly 103

Step 2. The ui and the corresponding vi each one is flanked by p and q are
swapped by trlp,q provided the relations (2) and (3) are satisfied. The translo-
cation trlp,q performs as follows,

xcpuiqdw′$ipviqpviq$i$i+1y =⇒trlp,q
xcpviqdw′$ipuiqpviq$i$i+1y.

Step 3. The substring puiq used in the swapping is deleted from the program
in the context of relation (4) as follows,

xcpujqdw′$ipuiqpviq$i$i+1y =⇒delp
xcpujqdw′$ipviq$i$i+1y.

The encoding of $ipviq$i is still kept in program if ui appears again in the data.
Thus, the rewriting rule i : ui → vi is simulated in three subsequent Steps

1–3 in GM . At step 3, while delp performs, the next rewriting rule j : uj → vj ,
j "= i simulation could start making a copy of the corresponding $jpvjq$j in
program, unless ui appears immediately in a subsequent step in data. If the last
case happens, its simulation starts at the next step following delp.

The rewriting rules of M are simulated in GM correctly by the subsequent
repeats of the recombination Steps 1–3, and the next string can be reached:

#3s0w#3πM#2 =⇒∗
Rop∈R

#3sf#3πM#2.

When the substring #3sf#3 contains the final state sf is obtained in data, the
contexts of the relation (5) are satisfied the operation del# to be applied:

#3sf#3πM#2 =⇒del# ###sf###.

Thus, the target ###sf### is reached, GM accepts the word #3s0w#3πM#2.
For the converse implication, we have to claim that only a correct relation or

a correct combination of the relations and nothing else is used in each recombi-
nation step. We start the claim with the relation (1): operation cpy$i

does not
repeat immediately for the repeats of the pointer $i following its application.
By the definition of cpyp, the substring flanked by the repeat of a pointer p
is copied if and only if it is the following context of the first occurrence of p,
and the preceding context of the second occurrence of p in the splicing relation
(see Definition 3). Since the substring $ipviqpviq$i does not satisfy the context
defined by relation (1), cpy$i

is not applicable to it. It is true that only relations
(2) and (3) from Rtrl among others are satisfied on the string at the next step
of cpy$i

applied. When trlp,q was applied at Step 2 swapping ui and vi in the
contexts (2) and (3), it cannot be applied immediately its following step to the
same pointers in the same contexts as previous one. For instance, encoding of ui

would appear again in the data by trlp,q as xpuiqw$ipuiqpviq$i, but trlp,q is not
applicable to p and q here. Because the preceding and following contexts of the
second occurrence of the pointer q of the splicing relation (3) cannot be satisfied
on the string since ui and vi can never be the same strings in the rules of Turing
machine M . It completes the proof. �

104 T.-O. Ishdorj and I. Petre

5 Final Remarks

In the present paper we propose a computing model which is based on the ciliate
intramolecular gene assembly model developed, for instance, in [1]. The model is
mathematically elegant and biologically well-motivated because only three types
of operations (two of them are formalizations of gene assembly process in ciliates)
and a single string are involved. The context-sensitivity for string operations are
already well-known in formal language theory, see [9,7]. Moreover, parallelism
is a feature characteristic of bio-inspired computing models, starting with DNA
computing, which is also the case with our model. From a computer science point
of view, in the model (eAIR system) is both as powerful as Turing machines and
as efficient in solving intractable problems in feasible time. Investigating the
other computability characteristics of eAIR system could be worthwhile.

It is important to note that the cpy operation we introduce in this model
is purely theoretical. Although duplication mechanisms exists in nature, imple-
menting a copy operation of the kind we consider has not been demonstrated
yet.

Acknowledgments. The work of T.-O.I. is supported by the Center for In-
ternational Mobility (CIMO) Finland, grant TM-06-4036 and by Academy of
Finland, project 203667. The work of I.P. is supported by Academy of Finland,
project 108421.

We are grateful to Gheorghe Păun for useful discussions.

References

1. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2003)

2. Galiukschov, B.S.: Semicontextual grammars, Mathematika Logica i Matematika
Linguistika, Talinin University, pp. 38–50, 1981 (in Russian)

3. Garey, M., Jonhson, D.: Computers and Interactability. A Guide to the Theory of
NP-completeness. Freeman, San Francisco, CA (1979)

4. Harju, T., Petre, I., Li, C., Rozenberg, G.: Parallelism in gene assembly. In: Pro-
ceedings of DNA-based computers 10, Springer, Heidelberg, 2005 (to appear)

5. Head, T.: Formal Language Theory and DNA: an analysis of the generative capac-
ity of specific recombinant behaviors. Bull. Math. Biology 49, 737–759 (1987)

6. Ishdorj, T.-O., Petre, I., Rogojin, V.: Computational Power of Intramolecular Gene
Assembly. International Journal of Foundations of Computer Science (to appear)

7. Kari, L., Thierrin, G.: Contextual insertion/deletions and computability. Informa-
tion and Computation 131, 47–61 (1996)

8. Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution
to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA-
Based Computers, Philadelphia, PA, pp. 3–15 (1998)

9. Marcus, S.: Contextual grammars. Revue Roumaine de Matématique Pures et Ap-
pliquées 14, 1525–1534 (1969)

10. Papadimitriou, Ch.P.: Computational Complexity. Addison-Wesley, Reading, MA
(1994)

Computing Through Gene Assembly 105

11. Păun, Gh.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)
12. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing - New computing

paradigms. Springer, Heidelberg (1998)
13. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
14. Searls, D.B.: Formal language theory and biological macromolecules. Series in Dis-

crete Mathematics and Theoretical Computer Science 47, 117–140 (1999)

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 106–114, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning Vector Quantization Network for PAPR
Reduction in Orthogonal Frequency Division

Multiplexing Systems

Seema Khalid1, Syed Ismail Shah2, and Jamil Ahmad2

1 Center for Advanced Studies in Engineering, Islamabad, Pakistan
2 Iqra University Islamabad Campus H-9, Islamabad, Pakistan

k_seema6@yahoo.com, {ismail,jamilahmad}@iqraisb.edu.pk

Abstract. Major drawback of Orthogonal Frequency Division Multiplexing
(OFDM) is its high Peak to Average Power Ratio (PAPR) that exhibits inter
modulation noise when the signal has to be amplified with a non linear high
power amplifier (HPA). This paper proposes an efficient PAPR reduction
technique by taking the benefit of the classification capability of Learning
Vector Quantization (LVQ) network. The symbols are classified in different
classes and are multiplied by different phase sequences; to achieve minimum
PAPR before they are transmitted. By this technique a significant reduction in
number of computations is achieved.

Keywords: Orthogonal Frequency Division Multiplexing, Peak to Average
Power Ratio, Learning Vector Quantization, Neural Network.

1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) has become a popular
modulation method in high-speed wireless communications. By partitioning a
wideband fading channel into narrowband channels, OFDM is able to mitigate the
detrimental effects of multi-path fading using a simple one-tap equalizer. However, in
the time domain OFDM signals suffer from large envelope variations, which are often
characterized by the Peak-to-Average Power ratio (PAPR). The PAPR of the signal
x(t) with instantaneous power P(t) is defined as:

()[]
()

()

()[]
(){ }tPE

tPmax

dttx
T

1

txmax
txPAPR Tst0

T

0

2

s

2

Tt0

s

s ≤≤≤≤ ==

∫
 (1)

Due to high PAPR, signals require that transmission amplifiers operate at very low
power efficiencies to avoid clipping and distortion. Different methods have been
proposed during the last decade in order to reduce high PAPR of the OFDM
modulation. Those might be put into two big groups, linear techniques and non-linear
techniques. Some examples of methods using linear techniques are the Peak

 Learning Vector Quantization Network for PAPR Reduction in OFDM Systems 107

Reduction Carriers (PRC) schemes [1], Selected Mapping (SLM) [2], Partial transmit
Sequences (PTS) [2] and block code. On the other hand, non-linear techniques modify
the envelope of the time domain signal and are mainly composed of clipping and
windowing schemes [3], peak canceling Schemes [4] and Companding technique
based methods [5]. Along with conventional techniques, attempts have been made to
reduce PAPR of OFDM signal using unconventional computing as reported in [6] [7]
[8].

Usefulness of any proposed scheme is that it reduces the PAPR and is not
computationally complex. In our work we modified an existing promising reduction
technique, SLM by using Learning Vector Quantization (LVQ) network. In a SLM
system, an OFDM symbol is mapped to a set of quasi-independent equivalent
symbols and then the lowest-PAPR symbol is selected for transmission. The tradeoff
for PAPR reduction in SLM is computational complexity as each mapping requires an
additional Inverse Fast Fourier transform (IFFT) operation in the transmitter. By the
Learning Vector Quantization based SLM (LVQ-SLM), we eliminate the additional
IFFT operations, getting a very efficient PAPR reduction technique with reduced
computational complexity.

The rest of the paper is organized as follows. A brief overview of SLM technique
is given in Section 2. Section 3 describes the LVQ algorithm. The proposed model is
explained in Section 4. Results are reported in Section 5 followed by conclusion in
Section 6.

2 Selected Mapping Technique for PAPR Reduction

SLM takes advantage of the fact that the PAPR of an OFDM signal is very sensitive
to phase shifts in the frequency-domain data. PAPR reduction is achieved by
multiplying independent phase sequences to the original data and determining the
PAPR of each phase sequence/data combination. The combination with the lowest
PAPR is transmitted. In other words, the data sequence X is element-wise phased by

D, N-length phase sequences, [](){ } ()d1N

0k
d φkφ =

−
= where d is an integer such that d є

[0; D- 1] and D is total number of different phase sequences. After phasing, the D
candidate frequency-domain sequences are given by

() ()djφd eXX o= (2)

Where ‘◦’ is element-wise multiplication. We assume that () k0φ 0 ∀= so

that () XX 0 = .Define the D candidate time-domain OFDM symbols () (){ }d
L

d
L XIFFTx = .

Note that all of the candidate symbols carry the same information. In order to achieve
a PAPR reduction, the symbol with the lowest PAPR is transmitted. We define

(){ }d
L

Dd0
xminPAPRargd

<<
= (3)

With d , transmitted signal is ()dx . At the receiver the X can be recovered with de-
rotating i.e.

108 S. Khalid, S.I. Shah, and J. Ahmad

(){ } ()djφd exFFTX −= o (4)

To recover X it is necessary for the receiver to have a table of all phase

sequences ()dφ . A ⎡ ⎤Dlog2 bit of side information is required to recover original

symbol.

3 Learning Vector Quantization

LVQ is a supervised version of vector quantization, similar to Self Organizing Maps
(SOM) [9], [10]. It is used in pattern recognition, multi-class classification and data
compression tasks. LVQ algorithms directly define class boundaries based on
prototypes, a nearest-neighbor rule and a winner-takes-it-all paradigm. The main idea
is to cover the input space of samples with ‘code vectors’ (CVs), each representing a
region labeled with a class. A CV can be seen as a prototype of a class member,
localized in the centre of a class or decision region (‘Voronoi cell’) in the input space.
As a result, the space is partitioned by a ‘Voronoi net’ of hyper planes perpendicular
to the linking line of two CVs shown in Fig. 1. A class can be represented by an
arbitrarily number of CVs, but one CV represents one class only. LVQ networks can
classify any set of input vectors, not just linearly separable sets of input vectors. The
only requirement is that the competitive layer must have enough neurons, and each
class must be assigned enough competitive neurons [11]. This property of LVQ
network is used to segregate the symbol that results in high PAPR from those which
result in low PAPR.

It has been shown that LVQ is particularly well suited as an on-line classifier
primarily due to its algorithmic speed [12]. The idea of LVQ is that in a classification
system based on the nearest-neighbor rule, a drastic gain of computation speed can be
obtained reducing the number of vectors that represent each class. A set of reference
vectors, also called code vectors (CVs), is adapted through an iterative process to the

Code vector class 1

Code vector class 2

Class boundary

Voronoi net

Delaunay net

Voronoi cell
Class/decision region

Fig. 1. Tessellation of input space into decision/class regions by code vectors represented as
neurons positioned in two-dimensional feature space

 Learning Vector Quantization Network for PAPR Reduction in OFDM Systems 109

Y2

Y1

X1

X2

Input
Layer Hidden

Layer
Output
Layer

O2

O3 O4

W3

W1

W2
X3

Winner
-takes-
it-all

O1

O4= x-w 2

Fig. 2. LVQ architecture: adjustable weight between input and hidden layer and a winner takes
it all mechanism

data according to a competitive learning rule. Learning means modifying the weights
in accordance with adapting rules and, therefore, changing the position of a CV in the
input space.

3.1 LVQ Algorithm

If x(t) the training vector presented at iteration t, mj the set of code vectors and mc(t)
the nearest code vector to x(t). Vector mc is obtained from the equation:

 ║x(t)−mc(t) ║ = min║ x(t)−mj(t) ║ (5)

And is adapted according to the learning rule

 mc(t +1) = mc(t)+ α(t)·[x(t)−mc(t)] if C(x) =C(mc)
or
 mc(t +1)=mc(t)− α(t) [x(t)−mc(t)] if C(x) ≠C(mc). (6)

Where α(t) є [0,1] is a learning rate and C(·) is a function returning the class of a
vector. The result of the process is an approximation of the data probability density
function by the code vectors. After such a training of the code vectors, any vector ‘y’
is classified according to the nearest neighbor rule. The ‘y’ is classified into class Ck
if the nearest code vector to ‘y’ is mc, where C (mc) =Ck.

4 Proposed Model

We tabulate all the possible symbols for a Binary Phase Shift Keyed (BPSK) and 8
sub-carrier OFDM system. There are 256 possible symbols. After taking their IFFT,

110 S. Khalid, S.I. Shah, and J. Ahmad

we compute the PAPRs of these symbols and segregate the symbols into two classes.
Those with high PAPR (> 4) are affirmed in class A and those which results in low
PAPR, in class B. A LVQ classifier is off-line trained to classify the input vectors in
two predefined classes. The trained network classifies the incoming symbols and
symbols classified in class A are rotated with a predefined phase value. One bit side
information is required to be transmitted to tell the receiver that, it’s an original or
rotated symbol. A simple rotator is used in the receiver that rotates (with the same
phase) only those symbols which belong from class A in opposite direction.

Then we take three different phase sequences. We tabulate all the PAPRs of
original symbols and those of rotated symbols with different phase values. We
classified the input data (256 symbols) into four different classes. Class O contains
symbols without phase shift, which results in minimum PAPRs as compared to rest of
their three rotated versions. Class A comprised of those symbols which result in

Input
symbol

Side info which
phase sequence
is used

min
PAPR

PAPR

ej
1

IFFT PAPR

PAPR

PAPR

IFFT

IFFT

IFFT

ej
2

ej
3

ej
4

Fig. 3. The block diagrams of the SLM technique

Input symbol

LVQ
classifier

Side info which
phase sequence is
used

IFFT
ej

2

ej
3

ej
4

ej
1

Fig. 4. The block diagrams of LVQ-SLM technique

 Learning Vector Quantization Network for PAPR Reduction in OFDM Systems 111

minimum PAPR when rotated with phase sequence A. Similarly class B and class C
are defined with symbols having minimum PAPR after being phase shifted by
sequence B or sequence C. All of these computations are done as pre-processing and
the input symbols are distributed in four different classes O, A, B and C. A LVQ
classifier is trained offline to classify the input symbols. Two bit side information is
required to identify to which class the symbol belonged. At the receiver side three
phase rotator are used to de-rotate the symbol depending, from which class the
symbol belonged. Fig. 3 shows the block diagrams of the SLM technique. Our
proposed model of SLM with a LVQ classifier is shown in Fig. 4. The receivers are
identical for both the techniques.

5. Simulation Results

The accuracy of classification depends on several factors. A learning schedule (a plan
for LVQ-algorithms LVQ1 or LVQ2) with specific values for the main parameters at
different training phases and the number of CVs for each class is decided while
avoiding under- or over fitting. Additionally, the rule for stopping the learning
process as well as the initialization method determined the results.

The simulation results in which Complementary Cumulative Distribution Function
(CCDF) of PAPR are shown in Fig. 5. D=1 is when no classification is done. D=2 is
the case when symbols are classified in two classes, higher valued (PAPR>4) in class
A and lower valued in class B, and class A symbols are multiplied by a fixed phase
sequence. D=4 is when we segregate the data in four classes and symbol is multiplied
by the predefined phase sequence to have minimum PAPR among the four mappings.

The simulations are repeated till convergence using different learning rates and
varying the number of CVs. Training is done offline so we kept learning rate small to
have better convergence. The basic aim was to achieve better classification accuracy

2 3 4 5 6 7 8 9 10 11
10

-2

10
-1

10
0

PAPRo (db)

P
r(

P
A

P
R

>
P

A
P

R
o)

CCDF for different values of D

D=1D=1D=1D=1

D=2

D=4

D=10

Fig. 5. CCDF of 8 sub-carrier BPSK OFDM signal With D=1, 2, 4, 10

112 S. Khalid, S.I. Shah, and J. Ahmad

with least number of CVs to avoid over fitting. Several sets of initial weight vectors
are tested, and the best are selected.

It is observed in Fig. 5. (for D=2), the PAPR do not reduce much although the
symbols with higher PAPR are segregated in a different class and multiplied with a
phase sequence. The reason is a single phase sequence is used so it does not ensure
reduced PAPR after phase rotation. All the more an LVQ classifier is not 100%
accurate and miss classified some symbols. In case of three different mapping (D=4)
and then choose the symbol having minimum PAPR we get better results. The
classification accuracy is not improved but the probability that the symbol is wrongly
classified and at the same time has high PAPR was very less. By this model we
achieved as much reduction in PAPR as from the conventional SLM scheme (Fig. 6.)
but the computational cost has reduced significantly.

0 1 2 3 4 5 6 7 8 9 10 11

10
-2

10
-1

10
0

PAPRo

P
r

(P
A

P
R

>
P

A
P

R
o)

CCDF for SLM and LVQ-SLM for D=4

SLM

LVQ-SLM

Fig. 6. CCDF of SLM and LVQ-SLM with D=4 for 8-BPSK OFDM signal

For N sub carriers (N point IFFT) BPSK and D different phase sequences the
comparison of computations involved are shown in table 1.

Table 1. Reduction in number of computations

Conventional SLM Proposed model of LVQ-
SLM

D IFFT operations
(one N point IFFT costs

N/2log2(N) complex multiplications
Nlog2(N) complex addition)

Single IFFT operation

(D-1) PAPR calculations
N length maximum value search

No PAPR to be calculated

Finding minimum from PAPR values.
D length minimum value search

No minima is to be found

 Learning Vector Quantization Network for PAPR Reduction in OFDM Systems 113

We get rid of online multiple IFFT and PAPR evaluating computations on the
transmitter end where each IFFT cost many elementary operations. All the training of
the LVQ classifier was done offline. We avoid over fitting (large number of CVs to
define the class) to avoid unnecessary computations in online classification. The
result of the training of classifier is tabulated in table 2. The table shows the
percentages of data used for training and the percentage of errors occurred in
classification. As the training is done offline so we used 100% data to get more
accurate classifier.

Table 2. Percentage of training set and the error in classification

Training data % error
100% 97
80% 88
50% 62

6 Conclusion

The proposed scheme, using classifier has achieved required PAPR reduction with
significant saving in the number of computations. The underline idea is to use
classification capability of LVQ network; classify the symbols in different classes
depending on what set of operations the symbol require undergoing to result in low
PAPR. Apply predefined set of operations to reduce PAPR of those symbols. Class
identity, in which the symbol is classified at the transmitter end, is to be transmitted as
side information. On the receiver, reverse set of operations are used to retrieve the
original symbol, in view of its class information. By this idea of classifying the
symbols in different groups, other nonlinear PAPR reduction schemes can be
implemented with reduced computational cost.

Acknowledgement

The authors acknowledge the enabling role of the Higher Education Commission
Islamabad, Pakistan and appreciate its financial support through “Development of
S&T Manpower through Merit Scholarship scheme 200.”

Reference

1. Tan, C.E., Wassell, I.J.: Suboptimum peak reduction carriers for OFDM systems. In:
Proceeding for Vehicular Technology conference VTC-2003, vol. 2, pp. 1183–1187
(2003)

2. Muller, S.H., Bauml, R.W., Fisher, R.F.H.: OFDM with reduced Peak to Average power
ratio by multiple signal representation: Annals of telecommunications, vol. 52(1-2)
(February 1997)

3. Nee, R.V., Prasad, R.: OFDM for wireless Communications: Ed Artech House, U.S.A
(2000)

114 S. Khalid, S.I. Shah, and J. Ahmad

4. May, T., Rohling, H.: Reducing Peak to Average Power Ratio reduction in OFDM Radio
transmission system. In: Proceedings of IEEE VTC’98, Ottawa, Canada, vol. 3, pp. 2474–
2478 (May 1998)

5. Tang, W., et al.: Reduction in PAPR of OFDM system using revised Companding. In:
Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp.
62–66. Springer, Heidelberg (2002)

6. Ohta, M., Yamashita, K.: A Chaotic Neural Network for Reducing the Peak-to-Average
Power Ratio of Multi-carrier Modulation. In: International Joint Conference on Neural
Networks, pp. 864–868 (2003)

7. Yamashita, K., Ohta, M.: Reducing peak-to-average power ratio of multi-cannier
modulation by Hopfield neural network. Electronics Letters, 1370–1371 (2002)

8. Ohta, M., Yamada, H., Yamashita, K.: A neural phase rotator for PAPR reduction of PCC-
OFDM signal: IJCNN’05, vol. 4, pp. 2363–2366 (August 2005)

9. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for Vector Quantizer design. IEEE Trans.
on communications, 702–710 (1980)

10. Yin, H., Alinson, N.M.: Stochastic analysis and comparison of Kohonen SOM with
optimal filter. In: Third International Conference on Artificial Neural Networks Volume,
pp. 182–185 (1993)

11. Neural Network Toolbox Matlab 7 Documentation
12. Flotzinger, D., Kalcher, J., Pfurtscheller, G.: Suitability of Learning Vector Quantization

for on-line learning. In: A case study of EEG classification: Proc WCNN’93 World
Congress on Neural Networks, vol. I, pp. 224–227. Lawrence Erlbaum, Hillsdale, NJ
(1993)

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 115–126, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Binary Ant Colony Algorithm for Symbol Detection in
a Spatial Multiplexing System

Adnan Khan1, Sajid Bashir1, Muhammad Naeem2, Syed Ismail Shah3,
and Asrar Sheikh4

1 Centre for Advanced Studies in Engineering, Islamabad, Pakistan
2 Simnon Fraser University Burnaby BC Canada

3 Iqra University Islamabad Campus, H-9, Islamabad, Pakistan
4 Foundation University, Islamabad, Pakistan

adkhan100@gmail.com

Abstract. While an optimal Maximum Likelihood (ML) detection using an
exhaustive search method is prohibitively complex, we show that binary Ant
Colony Optimization (ACO) based Multi-Input Multi-Output (MIMO)
detection algorithm gives near-optimal Bit Error Rate (BER) performance with
reduced computational complexity. The simulation results suggest that the
reported unconventional detector gives an acceptable performance complexity
trade-off in comparison with conventional ML and non-linear Vertical Bell labs
Layered Space Time (VBLAST) detectors. The proposed technique results in 7-
dB enhanced BER performance with acceptable increase in computational
complexity in comparison with VBLAST. The reported algorithm reduces the
computer time requirement by as much as 94% over exhaustive search method
with a reasonable BER performance.

Keywords: Spatial Multiplexing System, Binary Ant System, Symbol
detection, Multi-Input Multi-Output–Orthogonal Frequency Division Multi-
plexing (MIMO-OFDM).

1 Introduction

Real world optimization problems are often so complex that finding the best solution
becomes computationally infeasible. Therefore, an intelligent approach is to search
for a reasonable approximate solution with lesser computational complexity. Many
techniques have been proposed that imitate nature’s own ingenious ways to explore
optimal solutions for both single and multi-objective optimization problems. Earliest
of the nature inspired techniques are genetic and other evolutionary heuristics that
evoke Darwinian evolution principles.

Ant Colony Optimization (ACO) meta-heuristics is one such technique that is
based on the cooperative forging strategy of real ants [1],[2]. In this approach, several
artificial ants perform a sequence of operations iteratively. Ants are guided by a
greedy heuristic algorithm which is problem dependent, that aid their search for better
solutions iteratively. Ants seek solutions using information gathered previously to

116 A. Khan et al.

perform their search in the vicinity of good solutions. In [3], Dorigo showed that
ACO is suitable for NP-complete problems such as that of the traveling salesman.
The resistance of ACO to being trapped in local minima and convergence to near
optimal solution in fewer iterations makes it a suitable candidate for real-time NP-
hard communication problems. Its binary version known as binary ant system (BAS)
is well suited for constrained optimization problems with binary solution structure [4].

In wireless communications system significant performance gains are achievable
when Multi-Input Multi-Output (MIMO) architecture employing multiple transmit
and receive antennas is used [6]. Increased system capacity can be achieved in these
systems due to efficient exploitation of spatial diversity available in MIMO channel.
This architecture is particularly suitable for higher data rate multimedia
communications [7].

One of the challenges in designing a wideband MIMO system is tremendous
processing requirements at the receiver. MIMO symbol detection involves detecting
symbol from a complex signal at the receiver. This detection process is considerably
complex as compared to single antenna system. Several MIMO detection techniques
have been proposed [8]. These detection techniques can be broadly divided into linear
and non-linear detection methods. Linear methods offer low complexity with
degraded BER performance as compared to non-linear methods. This paper focuses
on non-linear detectors and makes an effort to improve BER performance at the cost
of complexity and vice versa. ML and V-BLAST detectors [9],[10] are well known
non-linear MIMO detection methods. ML outperforms VBLAST in BER
performance, while VBLAST is lesser complex than ML. In [11],[12] a performance
complexity trade off between the two methods have been reported.

Being NP-hard [8] computational complexity of optimum ML technique is
generically exponential. Therefore, in order to solve these problems for any non-
trivial problem size, exact, approximate or un-conventional techniques such as meta-
heuristics based optimization approach can be used. The exact method exploits the
structure of the lattice and generally obtains the solution faster than a straightforward
exhaustive search [8]. Approximation algorithm provides approximate but easy to
implement low-complexity solutions to the integer least-squares problem. Whereas,
meta-heuristics based algorithm works reasonably well on many cases, but there is no
proof that it always converges fast like evolutionary techniques.

Earlier, one such evolutionary meta-heuristics known as particle swarm
optimization (PSO) has been successfully applied to the MIMO detection for the first
time by the authors [5]. In this paper, we report a binary ant system based symbol
detection algorithm (BA-MIMO) for spatial multiplexing systems with an acceptable
performance complexity trade off.

The rest of the paper is organized as follows. Section 2 provides the system model.
In section 3 MIMO symbol detection problem for flat fading channel is described. A
brief overview of the existing MIMO detectors is given in section 4. Section 5
provides the details of the proposed BA-MIMO detection technique. Performance of
the proposed detector is reported in section 6, while section 7 concludes the paper.

 Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System 117

2 MIMO Channel Model

Consider a MIMO system where Nt different signals are transmitted and arrive at an
array of Nr (Nt ≤ Nr) receivers via a rich-scattering flat-fading environment. Grouping
all the transmitted and received signals into vectors, the system can be viewed as
transmitting an Nt x 1 vector signal x through an Nt x Nr matrix channel H, with Nr x 1
Gaussian noise vector v added at the input of the receiver. The received signal as an
Nr x 1 vector can be written as:

y = Hx + v (1)

Where y is the received The (nr, nt)
th element of H,

r tn nh , is the complex channel

response from the nt
th transmit antenna to the nr

th receive antenna. The transmitted
symbol x is zero mean and has covariance matrix Rx = E{xx*} = 2 .xσ I The vector v is

also zero-mean and Rv = E{vv*} = 2 .vσ I In frequency-selective fading channels, the

entire channel frequency response
r tn nh is a function of the frequency. We can

therefore, write:

() () () ()f f f fy = H x + v (2)

When OFDM modulation is used, the entire channel is divided into a number of sub-
channels. These sub-channels are spaced orthogonally to each other such that no inter-
carrier interference (ICI) is present at the sub-carrier frequency subject to perfect
sampling and carrier synchronization. When sampled at the sub-carrier frequency
of

cnf , the channel model becomes.

() () () ()
; 2 ,...., 2 1

n n n nc c c c n N Nc c c= − −y = H x + v (3)

With Nc, the number of subcarriers is sufficiently large, the sub-channel at each of
these sub-carriers will experience flat-fading. Therefore, when using OFDM, the
MIMO detection over frequency-selective channels is transformed into MIMO
detection over Nc narrowband flat-fading channels. For this reason, we only focus on
the MIMO detection algorithms in flat-fading channels. The entries of the channel
matrix H are assumed to be known to the receiver but not to the transmitter. This
assumption is reasonable if training or pilot signals are sent to estimate the channel,
which is constant for some coherent interval.

3 Problem Formulation

The task is that of detecting Nt transmitted symbols from a set of Nr observed symbols
that have passed a non-ideal communication channel, typically modeled as a linear
system followed by an additive noise vector as shown in Fig. 1.

118 A. Khan et al.

Fig. 1. A simplified linear MIMO communication system showing the following discrete

signals: transmitted symbol vector tNχ∈x , channel matrix t rN xNH , additive noise

vector tNv , receive vector tNy , and detected symbol vector ˆ rNx

Transmitted symbols from a known finite alphabet χ = {x1,…,xM} of size M are
passed to the channel. The detector chooses one of the MNt possible transmitted
symbol vectors from the available data. Assuming that the symbol vectors

tNχ∈x are equiprobable, the Maximum Likelihood (ML) detector always returns an

optimal solution according to the following:

arg max ()*
tN
P is observed was sent

x
x y x

(4)

Assuming the additive noise v to be white and Gaussian, the ML detection problem of
Figure 1 can be can be expressed as the minimization of the squared Euclidean
distance to a target vector y over Nt-dimensional finite discrete search set:

2
arg min*

tN
H

x χ
= −

∈
x y x (5)

Optimal ML detection scheme needs to examine all MNt or 2bNt symbol
combinations (b is the number of bits per symbol). The problem can be solved by
enumerating over all possible x and finding the one that causes the minimum value as
in (5). Therefore, the computational complexity increases exponentially with
constellation size M and number of transmitters Nt.

The reported BA-MIMO detector views this MIMO-OFDM symbol detection issue
as a combinatorial optimization problem and tries to approximate the near-optimal
solution iteratively.

4 Existing MIMO Detectors

4.1 Linear Detectors

A straightforward approach to recover x from y is to use an Nt x Nr weight matrix W
to linearly combine the elements of y to estimate x, i.e. x̂ = Wy.

4.1.1 Zero-Forcing(ZF)
The ZF algorithm attempts to null out the interference introduced from the matrix
channel by directly inverting the channel with the weight matrix [8].

 Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System 119

4.1.2 Minimum Mean Squared Error (MMSE)
A drawback of ZF is that nulling out the interference without considering the noise
can boost up the noise power significantly, which in turn results in performance
degradation. To solve this, MMSE minimizes the mean squared-error, i.e. J(W) =
E{(x- x̂)*(x- x̂)}, with respect to W [13], [14].

4.2 Non- linear Detectors

4.2.1 VBLAST
A popular nonlinear combining approach is the vertical Bell labs layered space time
algorithm (VBLAST) [9],[10] also called Ordered Successive Interference
Cancellation (OSIC). It uses the detect-and-cancel strategy similar to that of decision-
feedback equalizer. Either ZF or MMSE can be used for detecting the strongest signal
component used for interference cancellation. The performance of this procedure is
generally better than ZF and MMSE. VBLAST provides a suboptimal solution with
lower computational complexity than ML. However, the performance of VBLAST is
degraded due to error propagation.

4.2.2 ML Detector
Maximum Likelihood detector is optimal but computationally very expansive. ML
detection is not practical in large MIMO systems.

5 ACO for Spatial Multiplexing System

ACO is an attractive technique that is very effective in solving optimization problems
that have discrete and finite search space. Since the optimal MIMO detection problem
involves a search process across the finite number of possible solutions, ACO is an
ideal candidate to solve this problem.

5.1 Ant Colony Optimization (ACO)

ACO is based on the behavior of a colony of ants searching for food. In this approach,
several artificial ants perform a sequence of operations iteratively. Within each
iteration, several ants search in parallel for good solutions in the solution space. One
or more ants are allowed to execute a move iteratively, leaving behind a pheromone
trail for others to follow. An ant traces out a single path, probabilistically selecting
only one element at a time, until an entire solution vector is obtained. In the following
iterations, the traversal of ants is guided by the pheromone trails, i.e., the stronger the
pheromone concentration along any path, the more likely an ant is to include that path
in defining a solution. The quality of produced solution is estimated via a cost
function in each iteration. This estimate of a solution quality is essential in
determining whether or not to deposit pheromone on the traversed path.

As the search progresses, deposited pheromone dominates ants’ selectivity,
reducing the randomness of the algorithm. Therefore, ACO is an exploitive algorithm
that seeks solutions using information gathered previously, and performs its search in
the vicinity of good solutions. However, since the ant’s movements are stochastic,

120 A. Khan et al.

ACO is also an exploratory algorithm that samples a wide range of solutions in the
solution space.

5.2 Binary Ant System (BAS)

1) Solution construction: In BAS, artificial ants construct solutions by traversing the
mapping graph as shown in Fig.2 below.

Fig. 2. Routing Diagram for Ants in BAS

A number of na ants cooperate together to search in the binary solution domain per
iteration. Each ant constructs its solution by walking sequentially from node 1 to node
n+1 on the routing graph shown above. At each node i, ant either selects upper path i0
or the lower path i1 to walk to the next node i+1. Selecting i0 means xi=0 and selecting
i1 means xi=1. The selecting probability is dependent on the pheromone distribution
on the paths:

(), 1,..., , {0,1}p t i n sis isτ= = ∈ (6)

here ‘t’ is the number of iterations.

2) Pheromone Update: The algorithm sets all the pheromone values as (0) 0.5isτ = ,

initially but uses a following pheromone update rule:

(1) (1) ()
upd

t t wxis is x S is x
τ ρ τ ρ+ ← − + ∑

∈ ∈

(7)

Where Supd is the set of solutions to be intensified; wx are explicit weights for each
solution x∈Supd, which satisfying 0≤ wx≤ 1 and ∑x∈Supd⏐is∈x wx=1. The evaporation
parameter ρ is initially as ρ0, but decreases as ρ ← 0.9ρ every time the pheromone
re-initialization is performed. Supd consists of three components: the global best
solution Sgb, the iteration best solution Sib, and the restart best solution Srb. wx
combinations are implemented according to the convergence status of the algorithm
which is monitored by convergence factor cf, given by:

0 1
1

n

i i
i

cf nτ τ
=

= −∑ (8)

The pheromone update strategy in different values of cf, are given in table-1, here wib,
wrb and wgb are the weight parameters for Sib, Srb and Sgb respectively, cfi, i=1,…,5 are

 Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System 121

threshold parameters in the range of [0,1]. When cf>cf5, the pheromone re-
initialization is preformed according to Sgb.

5.3 BA-MIMO Detection Algorithm

The major challenge in designing BAS based MIMO detector is the selection of
effective fitness function which is problem dependent and perhaps is the only link
between the real world problem and the optimization algorithm. The basic fitness
function used by this optimization algorithm to converge to the optimal solution is
(5). Choice of initial solution plays a vital role in the fast convergence of the
optimization algorithm to a suitable solution. We therefore, make a start with the ZF
or VBLAST input to the BA-MIMO detection algorithm. The proposed detection
algorithm is described as follows:

1) Take the output of ZF or VBLAST as initial input to algorithm instead of keeping
random values, such that {0,1}∈ix . Number of nodes n visited by na ants is bxNt i.e

ML search space size (xi). Here xi represents the bit strings of the detected symbols
at the receiver and i= 1 to n.

2) The probability of selecting xi=0 or 1 depends upon the pheromone deposited
according to (7). Where (0) 0.5isτ = for equal initial probability.

3) Evaluate the fitness of solution based on (5):

2
f H= −y x (9)

Minimum Euclidean distance for each symbol represents the fitness of solution.
Effect on the Euclidean distance due to xi measured.
4) Pheromone update based on (7) is performed. Supd that consists of Sgb, Sib, and Srb is

calculated with weights wx based on cf (8) and table-1.
5) Goto step-3 until maximum number of iterations is reached. The solution gets

refined iteratively.
As cf →0, the algorithm gets into convergence, once cf > cf5, the pheromone re-

initialization procedure is done according to Sgb.

ifH

gb
is

is L

is S

otherwise

τ τ
τ τ

= ∈

=
 (10)

where Hτ and Lτ are the two parameters satisfying 0< Lτ < Hτ <1 and Lτ + Hτ =1.

The algorithm parameters are set as : xi= bNt, τ0=.5, τH=.65 and ρ0=0.3.

Table 1. Pheromone Update Strategy for BA-MIMO system

 cf<cf1 cf<[cf1, cf2) cf<[cf2, cf3) cf<[cf3, cf4) cf<[cf4, cf5)
wib 1 2/3 1/3 0 0
wrb 0 1/3 2/3 1 0
wgb 0 0 0 0 1

122 A. Khan et al.

6 Performance Analysis of BA-MIMO Detection Technique

6.1 BER Versus SNR Performance

For performance comparison, we present simulation results of the proposed method
with existing detection techniques for the spatial multiplexing systems. 128 sub-
carriers and cyclic prefix of length 32 are used. The SNR (Eb/No) is the average Signal
to noise ratio per antenna (P/σv

2) where P is the average power per antenna and σv
2 is

the noise variance. The simulation environment assumes Rayleigh fading channel
with no correlation between sub-channels. The channel is assumed to be quasi-static
for each symbol, but independent among different symbols. Perfect sampling and
carrier frequency offset synchronization are assumed. An average of no less than
10,000 simulations is obtained for each result in order to report statistically
relevant results.

A 3x3 (NtxNr), 4x4, and 4-QAM 6x6 MIMO system is simulated. The symbols xi
and number of algorithm iterations (Nitr) depends upon Nt and QAM constellation
size. For 3x3, 4-QAM system, xi equals 6 and it grows to 12 for 6x6, 4-QAM system.
Nitr is kept in the range of 10 to 20 in our simulations. Iterations are according to the
system requirements. Larger Nitr can result in better BER at the cost of complexity.
However, the algorithm reaches saturation after a certain number of iterations and
therefore Nitr needs to be tuned carefully. Optimum Nitr value is taken after a number
or trials to find the best BER with least complexity.

Fig. 3 present the BER versus Eb/No performance of proposed detector compared
with ML and VBLAST detectors for 3x3 (Nitr=10). At 10-3 BER, the proposed BAV
algorithm (with VBLAST as initial guess) and BAZ algorithm (with ZF as initial
guess), result in 3-dB and 5-dB degraded performance in comparison with ML.
However, in comparison with VBLAST, both the BAV and BAZ show 7-dB and 5-
dB enhanced performance, respectively.

Fig. 3. BER versus SNR performance for a 3x3 system

 Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System 123

In a 4x4 system in Fig. 4 (Nitr=13), the BER gain of both BAZ and BAV detectors,
in comparison with VBLAST increase by 7-dB and 8-dB, respectively. The BER
performance of BAZ and BAV detectors lower by 4-dB and 3-dB from ML but with
some complexity reduction (discussed next).

Fig. 4. BER versus SNR performance for a 4x4 system

For a 6x6 (Nitr=18) system in Fig. 5, the BER improvement in comparison to
VBLAST for both the BAZ and BAV detectors is 7-dB and 8-dB, respectively.
However, ML has 7-dB (approximately) superior BER performance but its
complexity is also significant.

Increase in system configuration (NtxNr), results in exponential increase of search
space, therefore more algorithm iterations are required to converge to near-optimal
solution. A trade off between systems BER performance and iterations has to be
maintained according to the system requirement and priority.

Fig. 5. BER versus SNR performance for a 6x6 system

124 A. Khan et al.

6.2 Computational Complexity Comparison

Here we examine the computational complexity of the reported detector and compare
it with ML and VBLAST detectors. As the hardware cost of each algorithm is
implementation-specific, we try to provide a rough estimate of complexity in terms of
number of complex multiplications. The computational complexity is computed in
terms of the Nt, Nr and the constellation size M.

For ML detector as seen from (5) MNt(NrNt) multiplications are required for matrix
multiplication operation and additional MNtNr multiplications are needed for square
operation. Therefore, ML complexity becomes:

(1) tN
ML r tN N Mγ = + (11)

In case of ZF, the pseudo-inverse of matrix (HHH)-1HH takes
3 24 2t t rN N N+ multiplications [15]. Therefore ZF complexity becomes:

3 24 2ZF t t rN N Nγ = + (12)

For VBLAST the pseudo-inverse matrix is calculated Nt times with decreasing
dimension. In addition, the complexity of ordering and interference canceling is

1

0

[() 2].
tN

t t t
i

N N i N
−

=

− +∑ Therefore, total complexity of VBLAST (γVBLAST) results in.

1
3 2

0 0
(4 2) [() 2]

t tN N

VBLAST r t t t
i i

i N i N N i Nγ
−

= =
+ + − +∑ ∑= (13)

() ()4 3 25 2 2 3 7 2 1 3t r t r t t rN N N N N N N= + + + + + (14)

For BA-MIMO detector, first fitness using (5) in xi is calculated. Therefore,
Multiplication complexity (γBA-MIMO) becomes,

()BA MIMO i t rx N Nγ − = (15)

Pheromone update requires μp additional multiplications per iteration with from (7).
Therefore μp becomes 2, the complexity becomes,

()BA MIMO i t r px N Nγ μ− = + (16)

This procedure is repeated Nitr (same as t) times to converge to the near-optimal BER
performance. Therefore,

()BA MIMO i t r p itrx N N Nγ μ− = + (17)

The Proposed detector takes initial solution guess as ZF or VBLAST output therefore,
it is added into get the resultant complexity of BA-MIMO detector.

From (5),(11) it is observed that the complexity of ML is exponential with Nt and
M. ML complexity for a 4-QAM 4x4 system is 5120 and it grows to 4.7 M for 8x8
system. This increase is even significant with higher order modulation schemes.

Computational complexity of VBLAST for 4-QAM 4x4 and 6x6 systems
computed from (14) is 712 and 3054, respectively. The complexity of proposed

 Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System 125

detector with ZF initialization for 4x4 and 6x6 configurations is 2256 and 9504.
However, the complexity with VBLAST input comes out to be 2584 and 11262,
respectively. This complexity estimate is only meaningful in the order of magnitude
sense since it is based on the number of complex multiplications. The above
complexity is estimated on subcarrier-by-subcarrier for MIMO-OFDM system.

6.3 Performance-Complexity Trade-Off

A reasonable performance-complexity trade-off exists when a comparison of the
proposed detector is drawn with ML and VBLAST detectors. Table 2 draws a
comparison of the proposed detector with optimal ML and VBLAST detectors.
Compared to ML, complexity reduction of the proposed detector given by (γML - γBA-

MIMO)/γML is significant. In comparison to VBLAST, for 4x4 system, the proposed
detector with ZF input results in 7-dB increased BER performance at the cost of
increased 68 % computational time. However, as compared to ML, the complexity is
still 56 % lower with 4-dB lesser BER performance. This computational complexity
saving increases to as high as 94% at the cost of 7-dB lesser BER performance for a
6x6 system with ZF input.

Table 2. 4-QAM NtxNr systems - performance complexity trade-off

4x4 (na=8, Nitr=13, μp=2) 6x6 (na=12, Nitr=18, μp=2) Performance
comparison

between ML,
VBLAST and

proposed
detectors

Performance
(at 10-3 BER)

Computational

Complexity

Performance
(at 10-3 BER)

Computational

Complexity

BAZ and ML 4-dB less 56% less 7-dB less 94% less

BAV and ML 3-dB less 50% less 7-dB less 93% less

BAV and
VBLAST

8-dB more 71% more 8-dB more 80% more

BAZ and
VBLAST

7-dB more 68% more 7-dB more 67% more

7 Conclusions

In this paper, a binary ant system assisted symbol detection in a spatial multiplexing
system is reported. The algorithms simple model, lesser implementation complexity,
resistance to being trapped in local minima, convergence to reasonable solution in
fewer iterations and exploratory-exploitive search approach makes it a suitable
candidate for real-time wireless communications systems. This algorithm shows
promising results when compared with the optimal ML and traditional VBLAST
detectors. This BA-MIMO symbol detection mechanism approaches near-optimal
performance with much reduced computational complexity, especially for complex
systems with multiple transmitting antennas, where conventional ML detector is
computationally expensive and impractical to implement. When compared to

126 A. Khan et al.

VBLAST detector the proposed unconventional detection method results in enhanced
BER performance but at the cost of increase in complexity. The simulation results
suggest that the proposed detector in a 6x6 spatial multiplexing system improves
VBLAST BER performance by 7-dB. However, the ML complexity is reduced by
94% with a reasonable BER performance.

References

[1] Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical
report, Dipartimento di Elettronica e Informatica, Politecnico di Milano, IT (1991)

[2] Dorigo, M., Gambardella, L., Middendorf, M., Stutzle, T.: Guest editorial: special section
on ant colony optimization (2002)

[3] Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation 1, 53–66
(1997)

[4] Kong, M., Tian, P.: Introducing a Binary Ant colony Optimization. In: Fifth International
Workshop on Ant Colony Optimization and Swarm Intelligence (2006)

[5] Khan, A.A., Naeem, M., Shah, S.I.: A Particle Swarm Algorithm for Symbols Detection
in Wideband Spatial Multiplexing Systems. In: GECCO-07 accepted for publication in
Genetic and Evolutionary Computation Conference (2007)

[6] Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S.: Capacity limits of MIMO
channels. IEEE Journal on Selected Areas in Communications 20(5) (2003)

[7] Mujtaba, S.: TGn Sync Proposal Technical Specification. Agere Systems Inc. (2005),
http://www.tgnsync.org/techdocs/11-04-0889-06-000n-tgnsyncproposal-technical-
specification.doc

[8] Bolcskei, H., Gesbert, D., Papadias.: Space-Time Wireless Systems: From Array
Processing to MIMO Communications. Cambridge University Press, Cambridge (2005)

[9] Foschini, G.J.: Layered space-time architecture for wireless communication in a fading
environment when using multiple antennas. Bell Labs Technical Journal 1, 41–59 (1996)

[10] Foschini, G.J., Gans, M.J.: On limits of wireless communications in a fading environment
when using multiple antennas. Wireless Personal Communications 6(3), 311–335 (1998)

[11] Choi, W.J., Negi, R., Cioffi, J.M.: Combined ML and DFE decoding for the V-BLAST
system. In: Proc. IEEE International Conference on Communications 2000, pp. 1243–
1248. IEEE Computer Society Press, Los Alamitos (2000)

[12] Choi, W.J., Cheong, K.W., Cioffi, J.M.: Iterative soft interference cancellation for
multiple antenna systems. In: Proc.IEEE Wireless Communications and Networking
Conference 2000, pp. 304–309. IEEE Computer Society Press, Los Alamitos (2000)

[13] Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)
[14] Sayed, A.: Fundamentals of Adaptive Filtering, Wiley-IEEE Press (2003)
[15] Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. John Hopkins University

Press, Baltimore, MD (1996)

Quantum Authenticated Key Distribution�

Naya Nagy and Selim G. Akl

School of Computing, Queen’s University
Kingston, Ontario
Canada K7L 3N6

{nagy,akl}@cs.queensu.ca

Abstract. Quantum key distribution algorithms use a quantum com-
munication channel with quantum information and a classical commu-
nication channel for binary information. The classical channel, in all
algorithms to date, was required to be authenticated. Moreover, Lomo-
naco [8] claimed that authentication is not possible using only quantum
means. This paper reverses this claim. We design an algorithm for quan-
tum key distribution that does authentication by quantum means only.
Although a classical channel is still used, there is no need for the channel
to be authenticated. The algorithm relies on two protected public keys
to authenticate the communication partner.

Keywords: quantum key distribution, authentication, entanglement.

1 Introduction

Most cryptosystems commercially used today, rely on the principles of public key
cryptography. Invariably, such cryptosystems aim to offer the means of exchang-
ing secret messages securely and reliably. Suppose two entities, Alice and Bob,
want to exchange secret messages; specifically, Bob prepares a secret message
to be sent to Alice. Unfortunately, all they have available is a classical insecure
communication channel. This means, a malevolent third party, Eve, makes every
effort to ruin the secrecy or content of Bob’s message. Eve can listen to the com-
munication channel to find out the content of Bob’s message. And also, Eve can
tamper with Bob’s message, adding, deleting or editing parts of the message.
The security of the public key cryptosystem relies on the difficulty of inverting
particular algebraic functions, also called “one-way” functions.

Secure communication is achieved using two types of keys: a public key and
a private key. If Bob wants to send a secret message to Alice, he uses the public
key to encrypt the message. Alice then reads the message after using her private
key for decoding. There are a few characteristics worth mentioning about the
two keys implied in this communication. Alice’s private key is secret, and not
shared with anybody else. In particular, Bob does not need to know Alice’s
private key. This is a major advantage, as the private key is never seen on any
� This research was supported by the Natural Sciences and Engineering Research

Council of Canada.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 127–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 N. Nagy and S.G. Akl

communication channel and therefore, its secrecy is ensured. The public key is
available to anybody. Bob needs to know it, and also an eavesdropper, Eve,
has access to it. In order for the protocol to work, the public key is guaranteed
to be protected. This means, there is a consensus about the public key value.
Both Bob and Alice are sure that they use the correct, same public key. Eve
cannot masquerade as Alice and change the value of the public key, making Bob
use a false public key to encrypt his message. This feature of the public key is
important. Our authentication protocol for quantum key distribution makes use
of this property of the protected public key. It is crucial in both the classical
sense of authentication protocols, as well as in our protocol, that such a public
key can be published with the guarantee that the key is and remains protected
from masquerading.

The security of the public key distribution protocol relies on the theoretically
unproven assumption that factoring large numbers is intractable on classical
computers. As described in [7], quantum computers can break some of the best
public key cryptosystems.

Quantum cryptography aims to design mechanisms for secret communication
with higher security than protocols based on the public key approach. Privacy
of a message and its credibility is well satisfied in a private key cryptosystem
setting. Alice and Bob share one and the same secret key, ks. Bob uses the secret
key for encryption and Alice consequently decrypts the message with the same
key. As long as ks is unknown to anybody else, the secrecy of the communication
is satisfied. There exist various encryption / decryption functions using ks, such
that the encrypted message reveals no information whatsoever about the content
of the message, provided the key ks is unavailable.

Quantum key distribution protocols establish secret keys via insecure quan-
tum and/or classical channels. Existing quantum key distribution algorithms
generally use two communication channels between Alice and Bob: a quantum
channel which transmits qubits and a classical channel for classical binary infor-
mation. The classical channel is used to communicate measurement strategy, or
the basis for measurement, and to check for eavesdropping.

Quantum key distribution protocols may derive their efficiency from different
quantum properties. The first protocol developed by Charles Bennett and Gilles
Brassard, known as the BB84 protocol [2], relies on measuring qubits in two
different orthonormal bases. The same idea applies to any two nonorthogonal
bases [1]. In [5] the quantum key distribution algorithm is derived from the
quantum Fourier transform. Based on the property of entanglement, Artur Ekert
[4] gave a quantum key distribution solution using entangled qubits to be shared
by Alice and Bob. A simpler version with qubits entangled in the same way,
namely in the Bell states, is described in [3].

Note that all quantum key distribution algorithms mentioned above require
that the classical channel be authenticated. Authentication is supposed to be
done by classical means. The authenticated classical channel prevents Eve
from masquerading as someone else and tamper with the communication. It
was claimed by Lomonaco [8] that authentication is not possible in quantum

Quantum Authenticated Key Distribution 129

computation, that for any secure quantum communication a classical authenti-
cation scheme needs to be used.

As will be clear from the algorithm described in this paper, authentication
of a quantum communication protocol can be done by the quantum protocol
itself. The classical channel in our algorithm is not authenticated. Yet Alice and
Bob do have an authentication step at the end of the protocol, with the help
of protected public keys. Authentication is derived from the quantum algorithm
itself and can catch any masquerading over the classical channel.

Shi et. al [9] describe in their paper a quantum key distribution algorithm
that does not use a classical channel at all. Authentication is done by a trusted
authority, that provides the entangled qubits to Alice and Bob. In our paper,
such a trusted authority is not needed. The entangled qubits may come from an
insecure source.

The rest of the paper is organized as follows: Section 2 defines entanglement
and describes the particular entanglement based on phase incompatibility used
by our algorithm. Section 3 describes the algorithm with authentication and
security checking. Section 4 concludes the paper and offers some future directions
for investigation.

2 Entangled Qubits

The key distribution algorithm we present in the following sections relies on
entangled qubits. Alice and Bob, each possess one of a pair of entangled qubits.
If one party, say Alice, measures her qubit, Bob’s qubit will collapse to the state
compatible with Alice’s measurement.

The algorithms mentioned above [4,3,9], all rely on Bell entangled qubits. The
qubit pair is in one of the four Bell states:

1√
2
(|00〉 ± |11〉)

1√
2
(|01〉 ± |10〉)

Suppose Alice and Bob share a pair of entangled qubits described by the first
Bell state:

1√
2
(|00〉+ |11〉)

Alice has the first qubit and Bob has the second. If Alice measures her qubit
and sees a 0, then Bob’s qubit has collapsed to |0〉 as well. Bob will measure a
0 with certainty, that is, with probability 1. Again, if Alice measures a 1, Bob
will measure a 1 as well, with probability 1. The same scenario happens if Bob
is the first to measure his qubit.

Note that any measurement on one qubit of this entanglement collapses the
other qubit to a classical state. This property is specific to all four Bell states and

130 N. Nagy and S.G. Akl

is then exploited by the key distribution algorithms mentioned above: If Alice
measures her qubit, she knows what value Bob will measure. The entanglement
employed in this paper and algorithm does not have this property directly.

2.1 Entanglement Caused by Phase Incompatibility

Let us look now at an unusual form of entanglement. Consider the following
ensemble of two qubits:

φ =
1
2
(−|00〉+ |01〉+ |10〉+ |11〉)

The ensemble has all four components, |00〉, |01〉, |10〉, and |11〉, in its expres-
sion. And yet, this ensemble is entangled.

Consider the following proof. Suppose the ensemble φ is not entangled. This
means φ can be written as a scalar product of two independent qubits:

φ =
1
2
(α1|0〉+ β1|1〉)(α2|0〉+ β2|1〉)

Matching the coefficients from each base vector, we have the following condi-
tions:

1. α1α2 = −1
2. α1β2 = 1
3. α2β1 = 1
4. β1β2 = 1

The multiplication of conditions 1 and 4 have the result: α1α2β1β2 = −1.
From conditions 2 and 3, we have: α1α2β1β2 = 1. This is a contradiction. The
product α1α2β1β2 cannot have two values, both +1 and −1. It follows that φ
cannot be decomposed and thus the two qubits are entangled.

The entanglement of the ensemble is caused by the signs in front of the four
base vector components. Thus, it is not that some vector is missing in the ex-
pression of the ensemble, but the phases of the base vectors keep the two qubits
entangled.

2.2 Measurement

Let us investigate what happens to the ensemble φ, when the entanglement is
disrupted through measurement.

If the first qubit q1 is measured and yields q1 = |0〉 = 0 then the second
qubit collapses to q2 = 1√

2
(−|0〉+ |1〉). This is not a classical state, but a simple

Hadamard gate transforms q2 into a classical state. The Hadamard gate is defined
by the matrix

H =
1√
2

[
1 1
1 −1

]

Quantum Authenticated Key Distribution 131

Applying the Hadamard gate to an arbitrary qubit, we have H(α|0〉+β|1〉) =
α |0〉+|1〉√

2
+ β |0〉−|1〉√

2
. For our collapsed q2, we have H(q2) = H(1√

2
(−|0〉+ |1〉)) =

−|1〉. This is a classical 1.
The converse happens when qubit q1 yields 1 through measurement. In this

case q2 collapses to q2 = 1√
2
(|0〉+ |1〉). Applying the Hadamard gate transforms

q2 to H(q2) = H(1√
2
(|0〉+ |1〉)) = |0〉 = 0. Again this is a classical state 0.

It follows that by using the Hadamard gate, there is a clear correlation between
the measured values of the first and second qubit. In particular, they always have
opposite values.

A similar scenario can be developed, when the second qubit q2 is measured
first. In this case, the first qubit q1, transformed by a Hadamard gate, yields the
opposite value of q2.

Note that the measurement of the qubits is assymmetric. Alice and Bob do
not perform the same operation. This feature will be exploited when checking
for eavesdropping.

3 The Algorithm

Alice and Bob wish to establish a secret key, to be used henceforth to encrypt /
decrypt messages. One session is required to establish a binary secret key, called
secret, such that Alice and Bob are in consensus about the value of the secret
key. The secret key secret consists of n bits, secret = b1b2...bn. Technically, to
perform the algorithm, Alice and Bob need a classical communication channel,
an array of entangled qubit pairs, and two protected public keys.

On the classical channel, classical binary information can be exchanged. The
channel is unprotected and not authenticated. The channel, being unprotected,
is sensitive to attacks of eavesdropping: Eve may attempt and successfully read
information from the channel. Also, the channel, not being authenticated, is
sensitive to masquerading: Eve may disconnect the channel and then talk to
Alice pretending she is Bob, and talk to Bob pretending she is Alice.

The array of the entangled qubits has length l, it consists of l qubit pairs
denoted (q1A, q1B), (q2A, q2B), ..., (qlA, qlB). The array is split between Alice and
Bob. Alice receives the first qubit of each entangled qubit pair, namely q1A,
q2A, ..., qlA, and Bob receives the second half of the qubit pairs, q1B, q2B , ...,
qlB. The entanglement of the qubit pair is of the type described in the previous
section, namely, phase incompatibility. The array of qubits is unprotected either.
There is no guarantee that the qubits of a pair are indeed entangled, Eve may
have disrupted the entanglement. Also, Eve may have masqueraded as either
Alice or Bob, modifying the entangled qubits, such that Alice’s qubit is actually
entangled with a qubit in Eve’s possession rather than Bob’s, and the same holds
for Bob.

Two public keys are needed by the algorithm. Alice has a public key keyA and
Bob has a public key keyB. The two public keys keyA and keyB are independent.
These keys are necessary for authentication. They have some characteristics
that are different from the classical public keys. The keys are established during

132 N. Nagy and S.G. Akl

the computation. They are not known prior to the key distribution algorithm
and are defined in value during the computation according to the measured
values of some of the qubits. This means that the keys are available after the
key distribution protocol. Consequently, the keys have to be posted after the
algorithm, which is unlike the classical case, where a public key is known in
advance. Also, the two public keys keyA and keyB are valid for one session,
for one application of the key distribution algorithm. If Alice and Bob want to
distribute a second secret key using the same algorithm, they will have to create
new public keys, which are different in value from the public keys of the previous
session.

The key distribution algorithm, like all quantum key distribution algorithms,
develops the value of the secret key during the computation. Implicitly, the values
of the public keys as well are developed during the computation. There exists
no knowledge whatsoever about the values of the keys (secret and public) prior
to running the algorithm.

The algorithm follows the steps below:

– Step 1 - Establish the value of the secret key
For each entangled qubit pair (qiA, qiB) in the array, the following actions
are taken. On the classical channel, Alice and Bob decide randomly who is
going to perform the first measurement.

Suppose it is Alice. Therefore, Alice measures her qubit qiA thereby
collapsing Bob’s qubit qiB to the state consistent with Alice’s measure-
ment. If Alice has measured a 0, qiA = 0 then Bob’s qubit has collapsed
to qiB = 1√

2
(−|0〉 + |1〉). If Alice’s measurement resulted in qiA = 1 then

Bob’s qubit collapsed to qiB = 1√
2
(|0〉+ |1〉). Now, Bob transforms his qubit

via a Hadamard gate. For Alice’s qiA = 0, Bob has a HqiB = 1, and con-
versely for Alice’s qiA = 1, Bob has a HqiB = 0. Bob now measures and his
value will consistently be the complement of Alice’s.

If Bob is the one who measures first his qubit qiB, the procedure is
simply mirrored. Alice now has to apply a Hadamard gate on her qubit, thus
obtaining HqiA. Again Alice and Bob will have measured complementary
binary digits.

Ideally, with no interference from Eve, be it through eavesdropping or
masquerading, applying this measurement and Hadamard measurement on
each qubit is enough to establish the secret key. After going through all
the qubit pairs, Alice and Bob will have complements of the same binary
number. This, for example Alice’s binary number, is the established secret
key.

– Step 2 - Authentication and Eavesdropping Checking
Some 2m qubits will be sacrificed for security checking, where 2m < l. The
secret key will be formed by the remaining n = l − 2m qubits. Alice and
Bob decide via the classical channel, the set of qubit indices to be sacrificed.
Alice looks at the first m qubits, and forms a binary number with the values
she reads. This is Alice’s public key. Alice now publishes her public key,
which key can be seen by Bob. As the public key is protected, Bob is certain

Quantum Authenticated Key Distribution 133

that the public key is safe from masquerading. Note that this is the only
step, where Bob is certain to have contact with Alice with no masquerading.
Bob now compares Alice’s public key with his own measured qubits. If these
two binary numbers are complementary, then Bob concludes that he has
been talking with Alice all the while in the previous step, and also that no
eavesdropper has changed some of the qubit values. The same procedure
applies to Bob’s public key formed by the second m sacrificed qubits. If Bob
or Alice have encountered a mismatch in the values checked, they discard
the secret key and try again.

Let us analyze what Eve can do to get some knowledge about the secret key
without being caught.

Note that Eve can have access to the qubits before they reach Alice and
Bob, prior to the actual protocol. For example, Alice generates entangled qubit
pairs. From each pair, she sends one qubit to Bob. The qubits are sent to Bob
insecurely: this is the moment where Eve can act upon the qubits through mea-
suring or exchanging qubits with her own. The initial distribution of entangled
qubits is therefore insecure. Eve is allowed any intervention of her choice on the
qubits. Alice and Bob have no guarantee that the qubits in their possession are
indeed entangled with each other as expected. But , and this is essential for the
security of the algorithm, once Alice and Bob, respectively, have their qubits in
their possession, Eve has no more access to them. This is a perfectly reason-
able assumption, that Alice and Bob can guard the qubits in their possession
from outside attacks. Eve cannot measure or exchange a qubit that has already
reached Alice and is in her possession. As such, if Alice and Bob have received
a correctly entangled qubit pair before they have started the protocol, Eve has
no chance to disrupt the entanglement afterwards. This means that Eve’s attack
on the entangled qubits can happen only prior to any decision concerning mea-
surement.1 Now, the advantage of an asymmetric measurement scheme can be
clearly seen. Eve has no gain in measuring a qubit of the entanglement before
the protocol is started. For example, if she does measure Alice’s qubit directly,
the later random measurement decision during the protocol may result in a
Hadamard gate measurement for Alice, thus exposing Eve’s intervention.

To evaluate a specific attack, let us consider that Alice’s and Bob’s qubits
are not really entangled, but Eve has sent qubits of her own choice to both of
them. Eve also can listen to the classical channel. The best she can do is send a
classical 0 to Alice and a Hadamard 1 to Bob. Actually, all other combinations
are equivalent to, or less advantageous than, this one. Alice and Bob decide
who is to measure first once they already have the qubits. With 1/2 probability,
Alice is measuring, in which case the readings are consistent. Bob measures first,
again with probability 1/2. Bob will measure a 1 or 0 with equal probability.
Then Alice transforms the classical 0 with a Hadamard gate, and also reads a
1 This property is even stronger in our improved algorithm with no classical commu-

nication presented in the Conclusion section. Here, the decision on how to measure a
qubit (directly or with a Hadamard gate) is not made on a classical communication
channel, but in private by Alice and Bob independently.

134 N. Nagy and S.G. Akl

0 or 1 with equal probability. This means that if Bob measures first, Alice and
Bob will read the same value with 1/2 probability. As such, Eve is caught with
1/4 probability. If the number of qubits to be tested is large, this probability
can be made arbitrarily large.

Note that, the classical channel does not need to be authenticated. Eve can
masquerade, such that she completely severs all connection between Alice and
Bob. In this case, Eve will establish one secret key with Alice, and another secret
key with Bob. Unfortunately for Eve, she has no control over the value of the
secret keys, as their values are determined probabilistically, through quantum
measurement. Therefore, the two keys will necessarily differ. As Alice and Bob
publish part of their secret keys as protected public keys, they will notice the
difference and consequently discard the keys.

This algorithm features a few notable characteristics. Checking for eavesdrop-
ping and authentication happens in one and the same step. Until this checking
phase, there is no certainty whatsoever about either the validity of the key, the
validity of the classical connection or the quantum qubit entanglement. But then,
the key is not useful or used before the checking step.

Another interesting feature is the way in which the two public keys are used
in our case. In classical settings, the public key is established and known by
both parties, before the algorithm or communication begins. By contrast, in
this quantum distribution algorithm, the public keys are determined during the
computation and they are available only after the secret key is established. The
publishing of the public keys is the very last step of Alice and Bob’s communica-
tion, whereas in previous algorithms this is the first step. The usage of the public
keys is in reverse order by comparison with classical secret communications, such
as those in the public key cryptosystems.

4 Conclusion

We have shown in this paper that quantum authentication in quantum key
distribution can be done through the quantum protocol, and does not need to rely
in any way on classical authentication procedures. Moreover, in our algorithm
authentication is easily done with the help of two protected public keys.

The algorithm presented performs quantum key distribution based on entan-
gled qubit pairs. The entanglement type is not of the generally used Bell states,
but an unusual entanglement based on phase incompatibility.

The algorithm uses a quantum channel and a classical channel, but unlike
all previous quantum key distribution algorithms, the classical channel is not
authenticated. Authentication and security checking are done at the same time,
after the algorithm, with the help of two public keys.

Specific to quantum key distribution algorithms, is the fact that the value
of the secret key is not known prior to performing the distribution. The key is
developed during the execution. Likewise, in our algorithm, we have the same
behavior of the public keys. They are not known prior to the execution of the
algorithm and are developed during the execution. The consequence is that the

Quantum Authenticated Key Distribution 135

public keys are session specific, rather than permanent for one person. The public
keys are distinct for each application of the quantum key distribution algorithm.

The algorithm presented here can be improved to work without a classical
communication channel at all, as described in [6]. Alice and Bob communicate
via the quantum channel of entangled qubits only. They each decide randomly,
whether to measure directly or apply a Hadamard gate. Some, actually half,
of the qubits will be measured correctly, with exactly one application of the
Hadamard gate. The other half will be measured incorrectly, either with no
Hadamard application or with two. The incorrectly measured qubits will be
discarded. The very promising feature of the measurement policy here is that
there exists no knowledge about how the qubits will be measured before they are
actually measured. Alice and Bob decide randomly, on the spot, how to measure
the qubit they are about to measure. There is no prior rule, that Eve might
get knowledge of. Because the measurement is asymmetric, Eve cannot predict
which measurement scheme will be followed by Alice and Bob. The tradeoff of
this random measuring is a doubling in the number of quantum bits used for a
final secret key of the same length. Also, the meaning of the public keys is more
complex, as it incorporates information about the random measurements.

As shown in this paper, quantum authentication can be done with the help
of a variation of protected public keys. This might not be the only solution. It is
an open problem what other structures can support authentication of quantum
channels.

The principle of checking and authenticating at the end of the protocol with
public keys, is not restricted to the algorithm described here. The same type
of public keys, namely per session keys, posted after the execution of the main
body of the algorithm, can be successfully used in authenticating other types of
algorithms. This is also a direction worth investigating.

Acknowledgments. The authors greatly appreciate the contribution of their
colleague Marius Nagy in drawing their attention to entanglement based on
phase incompatibility.

References

1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical
Review Letters 68(21), 3121–3124 (1992)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (De-
cember 1984)

3. Bennett, C.H., Brassard, G., Mermin, D.N.: Quantum cryptography without Bell’s
theorem. Physical Review Letters 68(5), 557–559 (1992)

4. Ekert, A.: Quantum cryptography based on Bell’s theorem. Physical Review Let-
ters 67, 661–663 (1991)

5. Nagy, M., Akl, S.G.: Quantum key distribution revisited. Technical Report 2006-516,
School of Computing, Queen’s University, Kingston, Ontario (June 2006)

136 N. Nagy and S.G. Akl

6. Nagy, N., Akl, S.G.: Authenticated quantum key distribution without classical com-
munication. In: Workshop on Unconventional Computational Problems, Sixth Inter-
national Conference on Unconventional Computation, Kingston, Ontario (August
2007)

7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK (2000)

8. Lomonaco, Jr., S.J.: A Talk on Quantum Cryptography or How Alice Outwits Eve.
In: Proceedings of Symposia in Applied Mathematics, vol. 58, pp. 237–264. Wash-
ington, DC (January 2002)

9. Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution
and quantum authentication based on entangled states. Physics Letters A 281(2-3),
83–87 (2001)

The Abstract Immune System Algorithm

José Pacheco1,	 and José Félix Costa2,3

1 Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa,

Quinta da Torre, 2829-516 Caparica, Portugal
jddp@di.fct.unl.pt

2 Department of Mathematics, Instituto Superior Técnico
Universidade Técnica de Lisboa

Lisboa, Portugal
fgc@math.ist.utl.pt

3 Centro de Matemática e Aplicações Fundamentais do Complexo Interdisciplinar
Universidade de Lisboa

Lisbon, Portugal

Abstract. In this paper we present an Abstract Immune System Algo-
rithm, based on the model introduced by Farmer et al, inspired on the
theory of Clonal Selection and Idiotypic Network due to Niels Jerne. The
proposed algorithm can be used in order to solve problems much in the
way that Evolutionary Algorithms or Artificial Neural Networks do. Be-
sides presenting the Algorithm itself, we briefly discuss its various param-
eters, how to encode input data and how to extract the output data from
its outcome. The reader can do their own experiments using the work-
bench found in the address http://ctp.di.fct.unl.pt/~jddp/immune/.

1 Introduction

Biological studies have always constituted a large pool of inspiration for the
design of systems. In the last decades, two biological systems have provided a
remarkable source of inspiration for the development of new types of algorithms:
neural networks and evolutionary algorithms.

In recent years, another biological inspired system has attracted the attention
of researchers, the immune system and its powerful information processing ca-
pabilities (e.g., [21,10]). In particular, it performs many complex computations
in a highly parallel and distributed fashion. The key features of the immune
system are: pattern recognition, feature extraction, diversity, learning, memory,
self-regulation, distributed detection, probabilistic detection, adaptability, speci-
ficity, etc. The mechanisms of the immune system are remarkably complex and
poorly understood, even by immunologists. Several theories and mathematical
models have been proposed to explain the immunological phenomena [19,16].
There is also a growing number of computer models to simulate various compo-
nents of the immune system and the overall behaviour from the biological point
� Corresponding author.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 137–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

138 J. Pacheco and J.F. Costa

of view [7,9]. Those approaches include differential equation models, stochastic
differential equation models, cellular-automata models, shape-space models, etc.

The models based on the immune system principles, such as the Clonal Selec-
tion Theory [6,12], the immune network model [15,8], or the negative selection
algorithm [14], have been finding increasing applications in science and engineer-
ing [9]: computer security, virus detection, process monitoring, fault diagnosis,
pattern recognition, etc.

Although the number of specific applications confirms the interest and the
capabilities of this principles, the lack of a general purpose algorithm for solving
problems based on them contrasts with the major achievements with other Bi-
ologically inspired models. In this paper we present a modest Abstract Immune
System Algorithm. Our paper is focused on describing the algorithm itself and
how to use it.

2 The Biological Model

The immune system is a very complex system with several functional compo-
nents [18,13]. It is constituted by a network of interacting cells and molecules
which recognize foreign substances. These foreign substances are called antigens.
The molecules of the immune system that recognize antigens are called antibod-
ies. An antibody does not recognize an antigen as a whole object. Instead, it
recognizes small regions called epitopes. An antibody recognizes an antigen if
it binds to one of its epitopes. The binding region of an antibody is called the
paratope. The strength and the specificity of the interaction between antibody
and antigen is measured by the affinity of the interaction. The affinity depends
on the degree of complementarity in shape between the interacting regions of
the antibody and the antigen. A given antibody can typically recognize a range
of different epitopes, and a given epitope can be recognized by different anti-
body types. Not only do antibodies recognize antigens but they also recognize
other antibodies if they have the right epitope. An epitope characteristic for a
given antibody type is called an idiotope. Antibodies are produced by cells called
B-lymphocytes. B-lymphocytes differ in the antibodies that they produce. Each
type of antibody is produced by a corresponding lymphocyte which produces
only this type of antibody. When an antibody on the surface of a lymphocyte
binds another molecule (antigen or other antibody), the lymphocyte is stimu-
lated to clone and to secrete free antibodies. In contrast, lymphocytes that are
not stimulated die after days. Thus, a selection process is at work here where
those antibodies that are stimulated by antigens or antibodies are amplified,
while the other antibodies die out.

There exist several theories to explain the dynamics of the immune system.
One of the most popular theories is the immune network model proposed by Niels
Jerne [15]. Jerne hypothesized that the immune system is a regulated network
of molecules and cells that recognize one another even in the absence of antigen.
Such networks are often called idiotypic networks which present a mathemati-
cal framework to illustrate the behaviour of the immune system. His theory is

The Abstract Immune System Algorithm 139

modeled with a system of differential equations which simulates the dynamics of
lymphocytes, the increase or decrease of the concentration of lymphocyte clones
and the corresponding immunoglobins. The idiotypic network hypothesis is based
on the concept that lymphocytes are not isolated, but communicate with each
other through interaction among antibodies. Jerne suggested that during an im-
mune response antigens will induce the creation of a first set of antibodies. These
antibodies would then act as antigens and induce a second set of anti-idiotypic
antibodies. The repetition of this process produces a network of lymphocytes
that recognize one another. With this hypothesis Jerne explains the display of
memory by the immune system.

Other important issues are the incorporation of new types in the immune
network and the removal of old types. The autoregulation of the immune system
keeps the total number of different types roughly constant. Although new types
are created continously, the probability that a newly created type is incorpo-
rated in the immune system is different for different types. In natural evolution,
the creation of new individual result from the mutation and crossover of the
individuals in the population. In the immune system, new antibody types are
created preferably in the neighbourhood of the existing high-fit antibody types.
The biased incorporation into the immune network of randomly created species
is called the recruitment strategy [5,3,4].

Also fundamental for the present formulation is clonal selection theory [6,12].
This theory states that there is a bisimilar relation between lymphocytes and re-
ceptors, hence each kind of lymphocyte has only one kind of receptor. To explain
the predominance or the disappearing of certain kinds of lymphocytes, the theory
assumes a highly diverse initial population, composed by randomly distributed
lymphocytes. The recognition of antigens produces a reaction of lymphocytes
are stimulating their reproduction, through the production of clones. The mea-
sure of the adaptability of lymphocytes, is proportional to the intensity of the
reaction, giving more chances of survival to those kinds of lymphocytes more
stimulated on a given environment. This natural selection process together with
the high rate of mutation found on the reproduction stage, induces an increase
of the concentration of the lymphocytes with the highest molecular affinity with
the form they try to eliminate.

3 The Algorithm

The algorithm presented here follows closely the model proposed by Farmer et
al [11] for the dynamics of a system based on the idiotypic network model. The
dynamics of the model is described using a set of differential equations of the
form:

ẋi = c

⎡⎣ N∑
j=1

mjixjxi − k1

N∑
j=1

mijxixj +
n∑

j=1

m∗
jiyjxi

⎤⎦− k2xi

where N is the number of antibody types, with concentrations, respectively, x1,
x2, ..., xN , and n is the number of antigen types with concentrations y1, y2, ...,

140 J. Pacheco and J.F. Costa

yn; m∗
ji correspond to the affinity between the paratope of the antibody i and

the epitope of the antigen j; mji correspond to the affinity between the paratope
of the antibody i and the epitope of the antibody j.

The first term represents the stimulation of the paratope of an antibody of
type i by the epitope of an antibody of type j. The second term represents
the suppression of the antibody of type i when its epitope is recognized by the
paratope of type j. The constant k1 represents the possible inequality between
stimulation and suppression. The third term models the stimulation provided by
the recognition of the antigen j (with concentration yj) by the antibody of type
i (with concentration xi). The final term models the tendency of cells to die in
the absence of any interaction, at a rate determined by k2. The parameter c is a
rate constant that depends on the number of collisions per unit of time and the
rate of antibody production stimulated by a collision.

Since we want to model the evolution of a population of potential solutions
of a problem, we consider the following set of equations:

ẋi = c

⎡⎣ N∑
j=1

mjixjxi − k1

N∑
j=1

mijxixj

⎤⎦− k2xi,

ignoring the antigens.
With some further simplification we get the equation:

ẋi =

⎡⎣ c

N∑
j=1

(mji − k1mij)xj − k2

⎤⎦ xi

and finally:

ẋi =

⎛⎝ N∑
j=0

nijxj

⎞⎠ xi

where nij = c (mji − k1mij), for j "= 0, n0j = 0, for all j, ni0 = −k2, for i "= 0,
and x0 = 1 by convention.

Since this system of differential equations is not integrable using analytic
methods, the algorithm uses the finite difference method to update the con-
centrations of the various antibody types. Therefore, the concentration of each
antibody is approximated, on each step of the simulation, using the update rule:

xi(t + h) = xi(t) + hẋi(t)

E.g.,

xi(t + h) = xi(t) + h xi(t)

⎛⎝ N∑
j=0

nijxj(t)

⎞⎠
If k1 = 1 (equal stimulation and suppression) and k2 > 0, then every antibody

type eventually dies due to the damping term. Taking k1 < 1 favors the formation

The Abstract Immune System Algorithm 141

of reaction loops, since all the numbers of a loop can gain concentration and
thereby fight the damping term. As N increases, so do the length and number of
loops. The robust properties of the loops allow the system to remember certain
states even when the system is disturbed by the introduction of new types.

Along with the three parameters (c, k1 and k2), which allow the tuning of the
algorithm, two others are necessary for the specification of the algorithm. We
need to set a death threshold and a recruitment threshold. The first establish the
minimum concentration under what a given antibody type is eliminated from
the population. The second indicates the minimum concentration above what
a given antibody is sufficiently stimulated to initiate the recruitment process.
Other parameters might be necessary depending on the recruitment process
used on a given implementation.

We can now formulate the Abstract Immune System Algorithm as the following
steps:

Randomly initialize initial population
Until termination condition is met do

Update concentrations using equation formula
Eliminate antibodies under death threshold
Recruitment of new antibodies

As usual with this kind of algorithms, several types of termination conditions
can be considered (time, number of generations, stability, maximum concentra-
tion, ...). As for the recruitment process, there are also many approaches that
can be followed. The simplest one would be just to clone and mutate the anti-
bodies with a probability proportional to their concentrations, but we can use a
scheme where crossover and other evolutionary processes are involved.

4 Problems and Results

In order to use the algorithm to solve a given problem we need to know how to
encode it and how to extract the result once the algorithm halts.

Each antibody represents a possible solution to the problem. Although the
usual binary representation is always possible, sometimes it is preferable to use
a different representation in order to avoid invalid solutions. These alternative
representations are largely dependent on the problem at hand. Examples of these
representations include: symbolic and tree-based representations.

Given an encoding, the second and probably the most important thing to
do is the function that computes the affinity between one paratope and one
epitope. For this function to be effective it must take into account not only the
affinity between the two antibodies but also enhance this value according to the
relative quality of the idiotop as a possible solution to the problem. This function
corresponds to the m matrix.

A third thing that needs to be established is the method of recruitment used
by the algorithm. The method can be as simple as clone and mutate antibodies

142 J. Pacheco and J.F. Costa

with probability proportional to their concentrations, but it can also include
other methods such as different types of crossover or any other evolutionary
method. If the newly generated antibody doesn’t exist in the population, then
it is introduced with a fixed concentration. This is the way we express diversity.

As we might expect several possible encodings exist for a given problem and
the choice will greatly influence the results obtained. Besides the different pa-
rameters, other factors that can influence the result are, for example, the initial
population (although the algorithm states that it is randomly generated we can
consider the situation where the initial population is carefully chosen) and its
dimension (N).

The outcome of the algorithm will be the individual with the highest con-
centration of the population. Since the concentration is closely related with the
probability of using a given antibody, it seems reasonable to take as answer to
the problem the most probable potential answer found. Several other schemes
could be considered depending on the problem itself.

5 The Probabilistic Computational Model

We consider probabilistic algorithms as in [2], chapter 6. Intuitively it is easy
to recognize our Algorithm as probabilistic. The factors of uncertainty are the
randomly generated initial population and the selection of antibodies for re-
cruitment. Each of these factors can be described as probabilistic guesses. In
this section we will address the problem of describing the Algorithm in a prob-
abilistic format. First we will present its formal description and then we will
analyze the probability related to each step of the process.

Consider a population of N antibody types. Each antibody is represented as
a sequence of size n. In generation k, the bit j of the antibody i, is a random
bit variable yk

ij . The concentration of antibody i in generation k is the variable
xk

i , with 0 ≤ xk
i ≤ 1. We assume normalization:

∑N
i=1 xk

i = 1, for all k.
In a rough analysis of our Algorithm, we introduce a few simplifying assump-

tions.

Assumption 1. We assume a unique optimal solution so that each bit of the
antibody type – solution has an unique correct value.

Assumption 2. We assume a surrogate affinity measure that is proportional to
the antibody quality. The quality is measured by the number of correct bits in the
antibody sequence.

Although these assumptions are not always true, since many problems have
multiple optima and the affinity measure can take any form, they are reasonable
in many cases and hopefully will lead to new insights. By Assumption 1, there is a
single correct value for each bit in the antibody type – solution. Let bk

ij be the bit
that tells us if yk

ij is the correct value. Let Sk
i =

∑n
j=1 bk

ij be the number of correct
values in antibody i in the generation k. By Assumption 2, the affinity function
is proportional to Sk

i . The best element of the population is Ak that corresponds

The Abstract Immune System Algorithm 143

to maxi Sk
i . Given a generation, with affinities {Sk−1

i }1≤i≤N , with k > 0, we can
construct the next generation by successively updating and normalizing antibody
concentrations, removing the antibody types with concentrations under the death
threshold and incorporating newly generated antibodies. The Abstract Immune
System Algorithm can be formally stated as follows:

(Initialize) Generate uniformly y0
ij , for every 1 ≤ i ≤ N , 1 ≤ j ≤ n.

Assign x0
i to its initial value. Calculate all S0

i and A0. k → 1.

(Iterate) While Ak−1 < n do

(Update) Use the rule

xk
i = xk−1

i + c

∫ k

k−1

xi(t)
N∑

j=1

nijxj(t)dt

to update the concentrations of the antibody types.
Normalize the concentrations.

(Eliminate) Remove all antibody types with concentrations xk
i less

than the death threshold. Update the value of N .

(Recruitment) Randomly select for recruitment, with probabilities
xk

i , antibody types with concentrations greater than
the recruitment threshold. Mutate the selected anti-
body types (modifying one bit of each) introducing
the newly created antibodies into the population. Up-
date the value of N .

(Evaluate) Evaluate each Sk
i . Determine Ak.

(Increment) k → k + 1.

(end iteration)

Some steps of the Algorithm display a completely deterministic behaviour.
Update will only affect the distribution of concentrations within the antibody
types of the population. This will only influence the choice of an antibody for
deletion and for recruitment. Eliminate will affect the population, but since an
antibody eligible for recruitment could never be eligible for deletion it will not
affect the Recruitment step. We will then concentrate in the two steps that
display probabilistic behaviour.

For the initial population, y0
ij is generated uniformly. The probability of choos-

ing a correct bit is always 1/2 for each bit. Also b0
ij is like tossing n coins. By

construction, y0
ij and b0

ij are independent variables. Hence S0
i has binomial distri-

bution B(n, 1/2). Further, all S0
i are independent from each other, though clearly

not independent of the corresponding y0
ij and b0

ij . The average affinity of the ini-
tial population is proportional to E[S0

i] = n/2. With N independent members

144 J. Pacheco and J.F. Costa

of the population, we have P (A0 ≤ J) = P (maxi S0
i ≤ J) = P (S0

i ≤ J, ∀i) =
(F (J))N where F (J) is the cumulative distribution function of B(m, 1/2), from
0 to J . The expectation value of A0 is given by the expression

E[A0] =
n−1∑
J=0

[1− (F (J))N].

In generation 0 the members of the population are independent. Subsequent
generations depend on the previous ones. However, their correlation is greatly
reduced by virtue of the distribution of affinities and for sufficiently large N .

The first part of the recruitment process is the selection of antibody types de-
termined by the concentrations. Only antibody types with concentrations above
the recruitment threshold are eligible for reproduction. The process of Recruit-
ment will increase the size of the population. Given an antibody type p selected
at random with affinity Sk−1

p , we derive the probability distribution of the affin-
ity Sk

i of the offsprings. In this rough analysis we make one more assumption.

Assumption 3. Given that the parent have J correct bits, the location of the
correct bits is distributed uniformly and the correct bits are independent of each
other.

Assumption 3 will be true in early generations, but becomes less accurate as the
population converges. The impact of this assumption will be judged empirically.
Given the selected antibody type, the mutated bit will either change from an
incorrect value to a correct one or change from a correct to an incorrect value.
Then for the offspring we have

Sk
i =

n∑
j �=l

bk
ij + wl

where wl is a Bernoulli variable corresponding to probability 1/2. The maximum
value of J can take is given when all the correct bits remain unchanged and the
bit selected mutates to a correct value. In this situation we have Sk

i = Sk−1
i + 1.

Under the Assumption 3 we have

P (Sk
i = J |Sk−1

p = J ′) =
(

n

J

)
(
J ′

n
)J (1− J ′

n
)(n−J)

For a sufficiently large N , we may approximate P (Sk
i ≤ Ji, 1 ≤ i ≤ N) ≈∏N

i=1 P (Sk
i ≤ Ji). According to our assumptions, we have

P (Sk
i ≤ J) ≈

n∑
I=0

P (Sk
i ≤ J |Sk−1

p = I)P (Sk−1
p = I)

The first factor of the sum can be computed from the equation above for P (Sk
i =

J |Sk−1
p = J ′). The second factor is given as the inductive step. Then

E[Sk
i] =

n−1∑
J=0

[1− P (Sk
i ≤ J)N].

The Abstract Immune System Algorithm 145

Since P (Ak ≤ J) ≈ [P (Sk
p ≤ J)]N , we get E[Ak] ≈

∑n−1
J=0[1 − P (Ak ≤ J)]. To

compute E[Ak], we compute the anchor distribution of S0
i as given before, and

then, inductively, we compute the distributions of Sk
i .

6 Examples

In this section we present two of the examples used to test the Algorithm. A
workbench of classes/interfaces in Java was programmed. The source code, its
documentation and the examples (to be tested by the reader) can be found at
the address http://ctp.di.fct.unl.pt/~jddp/immune/. The default settings
of the parameters of the workbench correspond the values that provided best
experimental results.

The first example selected is a classical maximization problem. The aim of
this example is to show how to use the Algorithm in its simplest form to solve a
problem that is very well studied for other biologically inspired algorithms. We
considered the power function f(x) = (x/c)n, where c is a normalizing constant
(with n = 10).

We considered a binary representation with 30 bits per antibody correspond-
ing to a large search space. Then we had to define an affinity function. As sug-
gested in Section 4, we considered two factors to compute this function. The first
factor represents the quality of the antibody, given by the function f we aim to
optimize. The second factor represents the correlation between an antibody and
any other antibody of the population, for this we used the Hamming distance
between the two antibody strings u and v of size m

H(u, v) =
m∑

i=1

ui (1− vi) +
m∑

i=1

vi (1− ui).

The final affinity function is

Affinity(u, v) = f(u)×H(u, v)

The third aspect is the recruitment method. We add to the population mutated
clones of the antibodies with concentration above the recruitment threshold.

The Algorithm was used with different initial population sizes and various
parameters and, nine out of ten times, it was capable of finding a near optimal
solution in less than a hundred generations.

As second example we considered the Iterated Prisoner’s Dilemma. The aim
of this example is to show the use of the Algorithm with a less trivial problem,
and the use of more sophisticated antibody representation and affinity function.

The prisoner’s dilemma is a classic problem of conflict and cooperation [20,1].
In its simplest form each of two players has a choice of cooperating with the other
or defecting. Depending on the two players’ decisions, each receives payoff ac-
cording to a payoff matrix. When both players cooperate they are both rewarded
at an equal, intermediate level (reward, R). When only one player defects, he
receives the highest level of payoff (temptation, T), while the other player gets

146 J. Pacheco and J.F. Costa

the sucker’s just deserts (sucker, S). When both players defect they each receive
an intermediate penalty (P). The prisoner’s dilemma has often been cited as a
simple yet realistic model of the inherent difficulty of achieving cooperative be-
haviour when rewards are available for the successful miscreant. The problem is
called the prisoner’s dilemma because it is an abstraction of the situation felt by
a prisoner who can either cut a deal with the prosecutor and thereby rat on his
partner in crime (defect) or keep silent and therefore tell nothing of the misdeed
(cooperate).

Table 1. Prisoner’s Dilemma Payoff Matrix

Player 2
Cooperate Defect

Cooperate R=6, R=6 S=0, T=10
Player 1

Defect T=10, S=0 P=2, P=2

The problem is made more interesting by playing it repeatedly with the same
group of players, thereby permitting partial time histories of behaviour to guide
future decisions. This so-called iterated prisoner’s dilemma has drawn interest
from game theorists for a while.

A strategy for the Iterated Prisoner’s Dilemma is not obvious. The goal to
the algorithm was to come up with the best possible strategy.

As ever, our first concern is to provide a representation for the possible solu-
tions of the problem. To represent a strategy we will need to decide what to do
next based on the history of past plays.

In our representation, to decide on a current move, a current player will look
at the past three rounds before making a decision. If a single round can be
represented by 2 bits: CC, CD, DC, DD, a three round memory requires 6 bits.
By choosing to represent a cooperation (C) as a 0 and a defect (D) as a 1, a
simple history pattern can be recorded. For instance, 10 00 01 will represent
that Player 2 defected three rounds ago, they both cooperated two rounds ago,
and Player 1 defected last round. In order to choose a current move, a Player
must have a strategy for all possible previous three rounds. In other words, a
Player must have 64 (26) different strategies on how to play. Also, a strategy
consists of defecting or cooperating, which can be represented by a single bit (0
for cooperate and 1 for defect). These facts allow the creation of our bit string
for the algorithm. Each bit represents a strategy for a given past three rounds.
The index value for the bit string is directly computable from the 6-bit history,
it is merely the conversion of the 6-bit history into the corresponding number.
So, the representation of a strategy for the prisoner’s dilemma is a 70-bit string.
The first 64-bits are to be used to determine the current move based on past
moves. The last 6 bits are to be used to determine the first move. Of course this
representation can be generalized to consider the n previous rounds to make the
decision, instead of just three. Note however that the size of the antibodies will
increase exponentially.

The Abstract Immune System Algorithm 147

Our second concern is to choose an affinity function. The obvious choice is
to make different strategies play against each other and use the difference of
the scores as the affinity. Obviously, the number of rounds we choose to play
will influence the accuracy of the affinity function. On the other hand, since the
algorithm will test the affinity of each antibody against all other, choosing a
large number of rounds will slow down the algorithm greatly. For this example
we used an affinity function that will play 20 rounds.

Our last concern is to provide a recruitment method for the algorithm. As we
did on the first example, as recruitment method we use cloning and mutation.
A mutation function can easily be implemented by randomly changing the value
of a small number of bits.

Finally, as a way to improve the performance of the algorithm, we introduced
in the initial population several antibodies representing well known proposed
strategies, such as:

– nice : player cooperates all the time;
– mean : player defects all the time;
– tit-for-tat : player cooperates for the first move, and then copies the other

player’s last move;
– opp-tit-for-tat : player defects for the first move, and then copies the other

player’s last move;
– cd : periodic behavior, plays CDCDCD
– ccd : periodic behavior, plays CCDCCD
– dcc : periodic behavior, plays DDCDDC
– pavlov : player cooperates if both players played the same action in the last

round.

The introduction of several well known strategies in the initial population had
the objective of providing the algorithm with some valid and efficient compe-
tition. Experimental results show that the algorithm provided best, or at least
fastest results, when this was done.

Nevertheless, even with a random initial population the algorithm was able to
discover strategies that beat the overall performance of the tit-for-tat strategy.

7 Conclusions and Future Work

We proposed a problem solving algorithm based on the model of the immune
system of Farmer et al, referred to as Abstract Immune System Algorithm. The
Algorithm proved to be capable to solve small to moderate size problems in an
efficient and reliable way.

The proposed algorithm falls under the category of biologically inspired soft-
computing systems. The following table (taken from [17]) summarizes the re-
lation between the three selectionist theories, mentioned in our work, namely
(1) the theory of (natural) evolution of species (New-Darwinism) [left]; (2) the
clonal selection theory (Jerne’s Clonal Selection theory) [middle]; (3) the theory
of neuronal group selection (Edelman’s Neural Darwinism) [right]:

148 J. Pacheco and J.F. Costa

Natural evolution Immune system Brain
Selectionist New-Darwinism Clonal selection Neuronal group
theory theory

Generator of Mutation and Recruitment strategy Cell movement,
diversity crossover differentiation

and death

Unity of Genotype / Antibody type Neuronal group
selection phenotype

Amplification Reproduction of the Secretion of free Modification of the
process fitter individuals antibodies and synaptic weights of

reproduction of the the connections
corresponding
B-lymphocytes

Explains Evolution Functioning Functioning

Adaptation Innovation Innovation Adjustment

Future work might concentrate on the study of variants of the Algorithm
and the impact of its parameters. As with evolutionary algorithms, the Abstract
Immune System Algorithm can be subject to variations, concerning either the
order of operations or different recruitment strategies. Another area for further
exploration is the experimentation of the algorithm in a larger set of problems
and the study of its adequacy. We might be concerned both with the quality of
the results and the characterization of the class of problems best suited for the
algorithm. The consideration of different representations, affinity functions and
recruitment methods dealing with well known problems can prove of particular
interest.

Acknowledgements. The authors are indebted to Jorge Orestes Cerdeira, Car-
los Lourenço and Helder Coelho for detailed criticism about this work. José Félix
Costa also thanks to his previous students João Maças and Francisco Martins
who started in 1995 this project with him.

References

1. Axelrod, R.: The Complexity of Cooperation: Agent-Based Models of Competition
and Collaboration. Princeton Press, Princeton, NJ (1997)

2. Balcázar, J., Dı́az, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer,
Heidelberg (1995)

3. Bersini, H.: Reinforcement learning and recruitment mechanism for adaptive dis-
tributed control. Technical Report IR/IRIDIA/92-4, Institut de Recherches Inter-
disciplinaires et de Développements en Intelligence Artificielle (1992)

4. Bersini, H., Seront, G.: Optimizing with the immune recruitment mechanism. Tech-
nical Report TR/IRIDIA/93-6, Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle (1993)

The Abstract Immune System Algorithm 149

5. Bersini, H., Varela, F.J.: The immune recruitment mechanism: A selective evolu-
tionary strategy. Technical Report IR/IRIDIA/91-5, Institut de Recherches Inter-
disciplinaires et de Développements en Intelligence Artificielle (1991)

6. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge
University Press, Cambridge (1959)

7. Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune
system. Immunology Today 13(2), 56–62 (1992)

8. Coutinho, A.: The network theory: 21 years later. Scandinavian Journal of Im-
munology 42, 3–8 (1995)

9. DasGupta, D. (ed.): Artficial Immune Systems and Their Applications. Springer,
Heidelberg (1998)

10. de Castro, L.N, Timmis, J.: Artificial Immune Systems: A New Computational
Approach. Springer, Heidelberg (2002)

11. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and
machine learning. Physica D 22, 187–204 (1986)

12. Forsdyke, D.R.: The origins of the clonal selection theory of immunity as a case
study for evaluation in science. The FASEB Journal 9, 164–166 (1995)

13. Herbert, W.J., Wilkinson, P.C., Stott, D.I: The Dictionary of Immunology, 4th
edn. Academic Press, San Diego (1995)

14. Jerne, N.K.: The natural-selection theory of antibody formation. Proceedings of
The National Academy of Sciences 41, 849–856 (1955)

15. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.
(Inst. Pasteur) 125(C), 373–389 (1974)

16. Lord, C.: An emergent homeostatic model of immunological memory. Technical
report, Carnegie Mellon Information Networking Institute (February 2002)

17. Manderick, B.: The importance of selectionist systems for cognition. In: Patton,
R. (ed.) Computing with Biological Metaphors, pp. 373–392. Chapman and Hall,
Sydney, Australia (1994)

18. Paul, W.E. (ed.): Fundamental Immunology, 3rd edn. Raven Press, New York
(1993)

19. Perelson, A.S., Weisbuch, G.: Immunology for physicists. Reviews of Modern
Physics 69(4), 1219–1263 (1997)

20. Poundstone, W.: Prisoner’s Dilemma: John von Neumann, Game Theory and the
Puzzle of the Bomb. Doubleday Publishing (1993)

21. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and
Applications. Springer, Heidelberg (2003)

Taming Non-compositionality Using New

Binders

Frédéric Prost

LIG
46, av Félix Viallet, F-38031 Grenoble, France

Frederic.Prost@imag.fr

Abstract. We propose an extension of the traditional λ-calculus in
which terms are used to control an outside computing device (quantum
computer, DNA computer...). We introduce two new binders: ν and ρ. In
νx.M , x denotes an abstract resource of the outside computing device,
whereas in ρx.M , x denotes a concrete resource. These two binders have
different properties (in terms of α-conversion, scope extrusion, convert-
ibility) than the ones of standard λ-binder. We illustrate the potential
benefits of our approach with a study of a quantum computing language
in which these new binders prove meaningful. We introduce a typing
system for this quantum computing framework in which linearity is only
required for concrete quantum bits offering a greater expressiveness than
previous propositions.

1 Introduction

λ-calculus [8] is a particularly well suited formalism to study functional pro-
grams. Any λ-variable can be replaced by any λ-term in the pure λ-calculus.
λ-abstraction can be seen in the following way: the term λx.M represents an al-
gorithm M in which x denotes another completely abstracted algorithm, thus x
may be seen as a black box. This approach is deeply compositional. The “mean-
ing” of M can be precisely defined with relation to the “meaning” of x. This
inner compositionality of λ-calculus is reflected by the success of type systems
for λ-caculi [9]. Those type systems can be used with good effect to statically
analyze programs (e.g. [2,20,19]).

Some λ-calculus variants have been developed to study functional programing
languages including imperative features like ML (e.g. [3,14,18]). The idea is to
introduce a global state and to refer to it via variable names. Name management
is handled via standard λ-abstraction mechanism. Typically in ML-like languages
[16] one can define a variable of type int by P

def
= let x=ref 0 in M which is

syntactic sugar for (λx.M (new 0)), where new is a side-effect function that adds
a new cell referred by x and whose value is 0 in the global state. α-conversion
of the λ-abstraction insures hygienic properties of such computing models, it
handles the fresh-name generation problem. For instance consider:

(λy.〈y, y〉 P)

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 150–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Taming Non-compositionality Using New Binders 151

where P is duplicated. The actual evaluation of this term will have to handle
the fact that x cannot refer to two different cells. From a a theoretical point of
view this problem is handled by α-conversion.

Introducing a global state enhances the expressiveness of the language but it
has a cost: compositionality is lost. Indeed, side effects on the global state lead
to non compositional behavior of programs. Consider the following program:

Q
def
= λy.(x :=!x + 1; y :=!y + 1)

where !x stands for the content of an imperative cell x. It is clear that (Q x)
increments the content of x by 2 whereas (Q z), provided that x "= z, increments
the content of x by 1. The problems get more complicated if you consider a
language in which variables can be references, and thus with potential aliasing
of variables: if z is aliased to x (but is syntacticly different from x) then (Q z)
increments x by 2. Static analysis of such programs is not an easy task, it requires
sophisticated approach very different from usual typing systems (see [11]).

Things can get even more complicated when the global state is not classical.
If you consider quantum computing [17], the global state is an array of quantum
bits. Several functional programming language have been proposed for quan-
tum computation (e.g. [22,21,6]). In a quantum functional programing language,
quantum bits can be entangled by side effects that go beyond the lexical scope
of their definitions. and thus such programing languages exhibit a highly-non
compositional behavior. Consider the program

Q
def
= λx, y.(Cnot < x, y >)

Q executes the conditional not on two quantum bits x, y. Therefore, (P q1 q2)
may entangle qbits q1 and q2. But if q1 is entangled to q0, and q2 is entangled to
q3, then (P q1 q2) also entangles q0 to q3 ! This simplistic example shows that
the classical binder, λ, is not well suited to deal with quantum bits and more
generally with global references.

In this paper we propose to extend the λ-calculus by adding two new binders:
ν and ρ. These binders exhibit different fundamental properties than the ones
of the λ binder. We show that these binders are more adapted for the design
of a functional programming language including a global state. νx declares a
new resource that can be used. It is very close to the ν of the π-calculus [15]
(hence the notation), but has not the scope extrusion property. In νx.M , x is an
abstract reference: x refers actually to nothing in the global state. On the other
hand ρ binder defines a concrete reference to something actual in the global
state. Because of possible side effects, ρ has the full scope extrusion property,
indeed operations on a local variable may have implications outside the scope of
its definition as explained earlier.

In section 2 we introduce λGS , a λ-calculus based framework to deal with
global states. We define a specific λGS calculus for quantum computation: λQ

GS in
section 3. We give a type system for λQ

GS allowing greater programming flexibility
than previous propositions of the literature. Finally, we conclude and discuss
future works in section 4.

152 F. Prost

Knowledge of basics of quantum computation is supposed. We refer to [7,1]
for quantum computing tutorials.

2 Global State Calculus

2.1 λGS Ideas

A λGS calculus is defined relatively to an outside computing device on which
computations/actions can be performed (such as a quantum state, DNA com-
puter etc.). Those actions controlled via λGS terms. λGS calculus may be viewed
as a system providing a functional control of a computing device. Thus a pro-
gram in λGS calculus has two parts: a hard one (the computing device viewed
as a global state which is a physical artifact used to compute) and a soft one
(the functional term that controls the computing process).

The functional part of λGS is implemented by standard λ-calculus terms with
extra features to deal with the global state. Interactions with the global state
are handled by two mechanisms:

1. Locations: from the term point of view, locations are just names. From the
global state point of view, locations are the addresses of physical entities (the
actual address of information stored in RAM, a specific quantum bit etc.).

2. Actions: from the term point of view, actions are terms that can be evaluated.
The evaluation depend on the global state as well as on the parameters of
the action (for instance the result of the measurement of a quantum bit).
From the global state point of view, actions perform actual modifications of
it (update of a RAM cell, application of a unary gate to quantum bits).

2.2 λGS Definition

A λGS framework is defined up to the choice of a global state and the according
actions.

Terms

Definition 1 (Terms). The set of terms T is inductively defined as follows:

M, N, P ::= x | � | λx.M | (M N)
| 〈M, N〉 | let 〈x, y〉 = M in N
| νx.M | ρ�.M |!M
| ai(M)

where x, � are respectively variable and location names defined over a countable
set V. L is the subset of V denoting locations.

There is no formal distinction between x and �. However we use the following
convention: � is used to denote a location (that is a reference to the outside
global state) whereas x denotes a standard λ-variable.

Taming Non-compositionality Using New Binders 153

Contexts are defined as usual : a context C[·] is a term where · ∈ V occurs
exactly once. By C[M] we denote the syntactical replacement of · with M (with
name capture).

The first two lines of definition 1 define standard pure λ-terms with tuples
(−→M denotes tuples of terms : −→M def

= 〈M1, 〈M2, 〈. . . , Mn〉 . . .〉〉). Tuples are native
in λGS because of actions, indeed actions cannot be curryfied: they are not
functions in a λ-calculus sense.

In λGS , there are three binders λ, ν and ρ. Thus, we have the following
definition of free variables.

Definition 2 (Free variables). Free variables are defined by:

FV (x) = {x} FV (!M) = FV (ai(M)) = FV (M)

FV (λx.M) = FV (νx.M) = FV (ρx.M) = FV (M) \ {x}

FV ((M N)) = FV (〈M, N〉) = FV (M) ∪ FV (N)

FV (let 〈x, y〉 = M in N) = (FV (M) ∪ FV (N)) \ {x, y}

In νx.M , x is an abstract fresh location and is bound in M . The idea, is that
νx.M is a piece of code that will use a global state information referred by x. On
the other hand ρ�.M denotes a piece of code that actually uses a concrete global
state information. � is bound in M in ρ�.M . As usual we write ρ�1, . . . , �n.M as
shorthand for ρ�1.ρ�2. . . . ρ�n.M .

!M is the realization action. It transforms an abstract location into a concrete
one. Intuitively (formal definition follows) we have the reduction:

C[!νx.M] → C[ρ�.M [x := �]]

where � is a fresh location relatively to FV (C[!νx.M]). The idea is that realiza-
tion has a side effect on the global state: it actually creates a new resource.

ai are actions and are relative to the global state. For example, if the global
state stores terms actions are affectation and pointer dereferencing. If the state
is made of quantum bits, then typical actions include unary gates (e.g. phase,
Conditional Not, Hadamard) and measurement.

Equivalences. We now define several equivalence relations over terms. Those
relations exhibit differences between the three λGS binders.

Definition 3 (Term equivalence). We have the following equivalences be-
tween terms:

– λ and ν binders generate α-equivalence:

λx.M =α λz.M [x := z]
νx.M =α νz.M [x := z]

with z "∈ FV (M)

154 F. Prost

– ν and ρ binders generate commutation equivalence:

ρ�.ρ�′.M =ξ ρ�′.ρ�.M
νx.νy.M =ξ νy.νx.M

– ρ binder generates scope extrusion equivalence:

C[ρ�.M] =σ ρ�.C[M]

for any context C[·].
– ρ binder generates garbage collection equivalence:

ρo.M =γ M o "∈ M

Let � be the union of =α, =σ, =ξ and =γ.

Scope extrusion is the main λGS mechanism to handle non-compositionality.
Indeed, � in ρ�.M refers to some outside computing device, thus any action on
� can have side effects that go beyond the lexical scope of ρ�.M . Consider for
instance a quantum computation model where locations refers to quantum bits.
In the following term:

N ≡ ρ�.〈ρ�1.ρ�2.M, ρ�3.Cnot(〈�1, �3〉)〉

where Cnot denotes the conditional not, the problem is the following : if �, �1

and �2 are entangled in M , then a conditional not on �, �3 can entangle �3 with
�1, �2. The idea is that once a concrete physical object is defined in a term then
this object may influence, or it may be influenced, by any other part of the
surrounding context. The standard form of N (see def. 1 below) is:

ρ�, �1, �2, �3.〈M, Cnot(〈�1, �3〉)〉

The idea is that scope extrusion is a syntactic mean to take into account non
compositionality. Indeed, in the standard form of N , the range of �3 is extended
in such a way that it can interact, or more precisely that it is possible to describe
within the term the interactions, with �2 for instance.

On the other hand ν binder only refer to an abstract pointer. It is an abstrac-
tion over outside computing devices that are going to be used to perform some
computation. Consider the following program:

M1 = (λx.〈x, x〉 νy.y)

we don’t want this to be equivalent to

M2 = νy.(λx.〈x, x〉 y)

since the evaluation of !M1 creates two different resources, whereas M2 only
creates one resource.

Following these equivalences, a notion of standard form for terms naturally
emerges (it corresponds to a distinguished term for each � equivalence class).

Taming Non-compositionality Using New Binders 155

Fact 1 (Standard form). For any term M , there exists N � M such that
N ≡ ρ�1.ρ�2. . . . ρ�n.Nρ with {�1, . . . , �n} ⊆ FV (Nρ) and Nρ has no subterm of
the form ρ�.N ′.

In the following we work modulo �. That is we suppose that terms are in stan-
dard form. Thus, when we consider a term t having a form different from ρ�.M ,
it implicitly means that t does not contain any ρ binder. Moreover ρ�.M also
implicitly means that � occurs in M .

Operational semantics. The global state is a mathematical view of a com-
puting device. Let S be a function from IN to some domain D which denotes the
actual physical objects concerned (DNA, quantum bits etc). We write ∅ the state
nowhere defined. The bridge between λGS terms and global state is done using
a Linking function that maps locations (λGS terms) to naturals (the address
of the physical entity). For instance in a quantum λGS system, the computing
device can be an array of quantum bits. A location � is associated to some qbits
(K(�) = 12 indicates that � is the 12th qbit of the array of quantum bits).

A λGS system is defined up to a family of actions that can be applied to the
global state. Take for instance a usual computer memory, classically you have
three actions to manipulate it: you can allocate a new memory cell to store an
information, read the content of a memory cell and update the content of an
existing memory cell.

Each action ai, has a side effect on the computing device and yields a value
that can be used for further computations. Thus, if the arity of ai is ni we must
provide two functions :

FD,K
i : (T ni × (IN → D)) → (IN → D)

FT ,K
i : T ni → T

FD,K
i models the side effect on the computing device by modifying the global

state (modification of S) and FT ,K
i denotes the value returned to the λGS term.

As usual if f is a function we denote by f & {x '→ v} the function g such that
g(y) = f(y) for all y "= x and g(x) = v.

The evaluation of pure terms is done via β-reduction as in the standard λ-
calculus. We write M [x := N] the term M where all free occurrences of x have
been replaced with N .

Definition 4 (Functional evaluation)

(λx.M N) →β M [x := N]

λGS evaluation process may alternate evaluation on pure terms as well as actions
on the global state. We have the following definition of the computation:

Definition 5 (λGS computation). We define �, the computation relation,
between tuples [S,K, M]

156 F. Prost

– Function: if M →β M ′ :

[S,K, M]� [S,K, M ′]

– Action:
[S,K, (ai

−→
M)]� [FD,K

i (−→M,S),K,FT ,K
i (−→M)]

– Realization:

[S,K, !νx.M] � [S & {n + 1 '→ d},K & {o '→ n + 1}, ρo.(M [x := o])]

with o a fresh name, d a distinguished value of D and S defined on {1, . . . , n}.

2.3 λGS Properties

Due to imperative nature of global state, it is clear that λGS might not be a con-
fluent calculus. Actually λGS is intrinsically non confluent even with the simplest
domain and actions. Consider the unit D = {d}, and λGS with no actions. Now
consider the following computation where β-reduction and realizations are alter-
natively performed. First, lets reduce the β-redex:

[∅, ∅, (λx.(x x) !νy.y)]� [∅, ∅, (!νy.y !νy.y)]
� [{1 '→ d}, {o '→ 1}, ρo.(!νy.y o)]
� [{1 '→ d, 2 '→ d}, {o '→ 1, o′ '→ 2}, ρo′.ρo.(o′ o)]

Second, lets reduce the κ-redex:

[∅, ∅, (λx.(x x) νy.y)]� [{1 '→ d}, {o '→ 1}, ρo.(λx.(x x) o)]
� [{1 '→ d}, {o '→ 1}, ρo.(o o)]

Thus, in order to have confluence, on has to fix a reduction strategy. We will
not discuss this point further here, and let the study of reduction strategies for
future work.

3 λGS for Quantum Computing

In this section we show how λGS can be used to define a functional quantum pro-
gramming language. We develop a typing system which insures the “no-cloning”
theorem. Our typing much more flexible than previous propositions based on a
strict linear typing discipline for quantum bits (e.g. [21]). This typing system
relies heavily on the new binders that make a syntactical distinction between
abstract and concrete quantum bits.

3.1 λQ
GS Definition

λQ
GS is a quantum programing system based on λGS . We suppose that the reader

has basic knowledges of quantum computing (see [17]). It is a functional pro-
gramming language for quantum computers based on the QRAM model [13]. The

Taming Non-compositionality Using New Binders 157

physical device of λQ
GS is an array of qbits. n qbits are represented as normalized

vector of the Hilbert space ⊗n
i=1C

2 noted as a ket vector : |ϕ〉.
quantum actions are standard unitary quantum gates like Cnot, T, H (respec-

tively control not, phase and Hadamard gates see [17] for precise definition) and
measure M. λQ

GS requires two boolean constants 0 and 1 corresponding to the
result of measurement.

Quantum measurement is probabilistic, therefore the measure action M is
probabilistic. However we do not focus on this particular point in this paper:
we are just interested in developing a typing system for λQ

GS . Functions defining
unitary actions are as follow:

F |ϕ〉,K
T (q) = TKq(|ϕ〉)

F |ϕ〉,K
H (q) = CnotKq(|ϕ〉) F |ϕ〉,K

Cnot (〈q, q′〉) = HKq,K(q′)(|ϕ〉)

FT ,K
T (q) = FT ,K

H (q) = q FT ,K
Cnot(〈q, q′〉) = 〈q, q′〉

where Ti, Hi, Cnoti,j are the respective phase, hadamard and conditional not
gates on quantum bits i and j (see [17]).

Let | ϕ〉 = α | ϕO〉 + β | ϕ1〉 be normalized with | 0〉 and | 1〉 being the i-th
quantum bit and

|ϕO〉 = Σiαi |φ0
i 〉⊗ |0〉⊗ |ψ0

i 〉 |ϕ1〉 = Σiβi |φ1
i 〉⊗ |1〉⊗ |ψ1

i 〉

then we define μ0 =| α |2 and μ1 =| β |2. We use =p to define probabilistic
functions: f(x) =p y means that f(x) yields y with probability p.

Fα|ϕO〉+β|ϕ1〉,K
T (q) =μ0 0 Fα|ϕO〉+β|ϕ1〉,,K

T (q) =μ1 1

FαDO+β|ϕ1〉,K
T (q) = α |ϕO〉 Fα|ϕO〉+β|ϕ1〉,K

T (q) = β |ϕ1〉

Realization is implemented by choosing |0〉 as default value, hence:

[|ϕ〉,K, !νx.M] � [S⊗ |0〉,K & {o '→ n + 1}, ρo.(M [x := o])]

3.2 λQ
GS Typing System

We now define a typing judgment for λQ
GS that ensures the no-cloning property

of quantum states through a linear typing discipline.

Definition 6 (λQ
GS types). Types are defined by:

τ ::= B | Q | τ → τ | τ × τ | ♦τ

For the sake of simplicity we only consider two base types: B is the type of bits
having 0, 1 as constants, and Q is the type of quantum bits. Note that there
are no constants of type Q in λQ

GS . Quantum bits are manipulated only through

158 F. Prost

location names and linking function. It is because of the non-locality of quantum
computations that quantum bits cannot be directly manipulated at the level of
terms (see [21] for further explanations). Unlike [21] there is no primitive notion
of linear types (there is no linear application function as well as exponential
types): linearity is handled through ν and ρ binders only. Type ♦τ is used to
identify ν redexes. Arrow and product types have their usual meanings.

In λQ
GS , ν and ρ only binds quantum bits locations. Thus x, � respectively

in νx.N and ρ�.M denote a location of a respectively abstract and concrete
quantum bit and must be typed with Q.

Typing contexts, written Γ ; Δ, are lists of couples made of variables and types
in which variables are uniquely defined. In order to help the reading we cut typing
contexts in two parts, the first part (Γ) is classical whereas the second one (Δ) is
l inear. For instance in x1 : τ1, . . . , xn : τn; x1 : τ1, . . . , xm : τm, each xi is classical
and can be reused (contraction rule [CTN]) and discarded as will (weakening
rule [WkgC]),and each yi is linear and can be used exactly once but can be
discarded (weakening rule [WkgL]).

It appears that linking function and global state do not play any role in the
typing process since locations can only contains quantum bits. Therefore typing
judgment is simply defined on λGS terms (and not in tuples including a global
state a linking function and a term).

Definition 7 (Typing judgement). λQ
GS typing judgment is a tuple Γ ; Δ �

M : τ , where Γ, Δ are typing contexts, M is a λQ
GS term and τ is a λQ

GS type.
Typing rules are given in Fig. 1.

Note that when .; . � M : τ implicitly means (remember our convention to
consider terms in standard form), that ρ does not occur in M . In facts typing
rules are defined on standard forms. Rule [ρI] is only applicable once at the root
of a typing tree and removes all ρ of the term.

λQ
GS typing systems is both classical (relatively to typing context Γ) and linear

(relatively to typing context Δ). The idea being that quantum data have to be
treated in a linear way (because of the no cloning property) whereas classical
data can be arbitrarily copied. Rules [AxC], [WkgC], [ExC], [→ IC], [×EC] are
the classical counterparts of linear rules [AxL], [WkgL], [ExL], [→ IL], [×EL].
Linearity is also to be found in rules [→ E], [×I], [×EL], [×EC] where linear
context is split between premises of the rule. The fact that Γ is classical is
achieved through the contraction rule [CTN] (which has no counterpart for Δ
hence insuring linearity on it) that allows the multiple use of a variable.

The premise ·; · � M : τ of rule [AxL], together with the side condition
! "∈ M is used to forbid declaration of a variable of a type τ containing a Q not
guarded by ♦ in the classical context (thus making possible the duplication of
quantum bits). It is possible to introduce y : ♦Q in the classical context because
.; . � νx.x : ♦Q. The same trick is used in rule [×EC], where we check that τ
and σ do not contain unguarded Q. In this paper we have only considered two ×
elimination rules: one is fully classical and the other one is fully linear. It would
be easy to define typing rules of couples where one member is linear whereas the
other one is classical.

Taming Non-compositionality Using New Binders 159

[CST0]
.; . � 0 : B

[CST1]
.; . � 1 : B

[AxC]
·; · � M : τ ! �∈ M

y : τ ; · � y : τ
[AxL] ·; y : τ � y : τ

[ExC]
Γ1, y : σ′, x : σ, Γ2; Δ � M : τ
Γ1, x : σ, y : σ′, Γ2; Δ � M : τ

[ExL]
Γ ; Δ1, y : σ′, x : σ, Δ2 � M : τ
Γ ; Δ1, x : σ, y : σ′, Δ2 � M : τ

[WkgC]
Γ ; Δ � M : τ

Γ, x : σ; Δ � M : τ
[WkgL]

Γ ;Δ � M : τ
Γ ;Δ, x : σ � M : τ

[→ IC] Γ, x : σ; Δ � M : τ
Γ ; Δ � λx.M : σ → τ

[→ IL] Γ ; Δ, x : σ � M : τ
Γ ; Δ � λx.M : σ → τ

[→ E]
Γ ; Δ1 � M : σ → τ Γ ; Δ2 � N : σ

Γ ; Δ1, Δ2 � (M N) : τ
[×I]

Γ ; Δ1 � M : τ Γ ;Δ2 � N : σ
Γ ; Δ1, Δ2 � 〈M, N〉 : τ × σ

[νI]
Γ ;Δ, x : Q � M : σ
Γ ; Δ � νx.M : ♦τ

[νE]
Γ ; Δ � M : ♦τ
Γ ;Δ �!M : τ

[CTN]
Γ, x : τ, y : τ ;Δ � M : σ

Γ, z : τ ; · � M [x := z; y := z] : σ

[×EL]
Γ ′; Δ1 � N : τ × σ Γ ′; Δ2, x : τ, y : σ � M : τ ′

Γ ; Δ1, Δ2 � let 〈x, y〉 = N in M : τ ′

[×EC]
Γ ; Δ1 � N : τ × σ Γ, x : τ, y : σ; Δ2 � M : τ ′ .; . � Q : τ

.; . � P : σ ! �∈ 〈P, Q〉
Γ ; Δ1, Δ2 � let 〈x, y〉 = N in M : τ ′

[ρI]
Γ ; Δ, �1 : Q, . . . , �n : Q � M : τ

Γ ; Δ � ρ�1, . . . , �n.M : τ

Fig. 1. λQ
GS typing rules

Rules [νI] and [νE] are standard introduction and elimination rules for a
connective (here ♦).

There is no elimination rule for binder ρ. This task will be fulfilled via garbage
collection and since [ρI] does not modify the type of the expression, then it causes
no harm to the subject reduction property.

The idea is that the programmer does not use ρ binders: they are completely
managed by evaluation procedure. It causes no problem for subject reduction
since there is no effect on the type of the term.

The standard subject reduction property is verified in λQ
GS .

Theorem 1 (Subject Reduction). Let M be such that Γ ; · � M : τ and
[|ϕ〉,K, M]� [S′,K, M ′], then Γ ; · � M ′ : τ

Consider for instance the following piece of code :

cf
def
= νx.M(H(x))

160 F. Prost

then .; . � cf : ♦B is derivable. So one can use xcf : ♦B in the classical typing
context. Thus, it is possible to reuse xcf (thanks to rule [CTN]). It is interesting
since cf denotes a perfect coin flipping, and should be usable as many times
as wanted in a probabilistic algorithm. This simple example is not possible to
directly encode in [21] where qbits are linearly used: one version of xcf must be
defined for every use of the coin flipping or promotion must be used.

4 Conclusion

In this paper we present a variation of the pure λ-calculus: λGS . We introduce two
new binders ν and ρ to bind variables that denote locations on a physical device
implementing a global state over which a computation is performed. Usually
variable name management (α-equivalence, fresh name generation) is handled
through λ binding but it does create two kind of problems when names refer to
an external device.

1. Compositionality is lost due to side effects that may occur in the external
device: one cannot ensure that effects related to a given location name are
limited to the lexical scope of this location name.

2. The description of an algorithm and its actual execution are two separate
things in such a context. Think for instance at the no-cloning axiom in quan-
tum computing: it only applies to real quantum bits, it should be possible
to be able to duplicate abstract algorithms like the example of the fair coin-
flipping.

Binder ρ is designed to take into account problem (1) whereas ν is designed to
take into account problem (2). This distinction proves useful since it allows the
definition of a type system for a quantum calculus that is more flexible than
previous propositions of the literature [21,6].

This work compares to the NEW calculus of Gabbay [12] where a context sub-
stitution is introduced through a new binder. Nevertheless, this works principally
addresses problems related to α-equivalence and does not talk about scope ex-
trusion. Another related work is the short note of Baro and Maurel [10] in which
the λ binder is split into two constructions: a pure binder, ν and a combinator
for the implementation of the β-reduction. In this case too the scope extrusion
is not addressed, and there is no notion of state.

We believe that λGS will prove useful in other situations than the one pre-
sented in this paper. As future work we plan to work on a typing system to
analyze entanglement/separation properties of quantum bits in λQ

GS . An idea
would be to decorate Q types with entanglement classes (two quantum bits
of the same class would be supposed entangled). As entanglement is typically a
non compositional property, this would give an interesting application of ρ scope
extrusion property.

Another line of work is to investigate other outside computing devices than
quantum ones. For instance one can try to define and study functional computing
languages for DNA computers [5] or chemical computers [4].

Taming Non-compositionality Using New Binders 161

References

1. Quantiki - introductory tutotrials:
http://www.quantiki.org/wiki/index.php/Category:Introductory Tutorials

2. Abadi, M., Banerjee, N., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: Proceedings of the 26th Annual ACM Symposium on Principles of Programming
Languages (POPL’99), pp. 147–160. ACM Press, New York (1999)

3. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for gen-
eral references. In: Proceedings of thirteenth Annual IEEE Symposium on Logic
in Computer Science (LICS’98), pp. 334–344. IEEE Computer Society Press, Los
Alamitos (1998)

4. Adamatzky, A.I.: Information-processing capabilities of chemical reaction-diffusion
systems. 1. belousov-zhabotinsky media in hydrogel matrices and on solid supports.
Advanced Materials for Optics and Electronics 7(5), 263–272 (1997)

5. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(11), 1021–1024 (1994)

6. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
20th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society Press, Los Alamitos (2005)

7. Arrighi, P.: Quantum computation explained to my mother. Bulletin of the
EATCS 80, 134–142 (2003)

8. Barendregt, H.P.: The Lambda Calculus; Its Syntax and Semantics. North-Holland,
Revised Edition (1984)

9. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, Clarendon Press,
Oxford (1993)

10. Baro, S., Maurel, F.: The qν and qνK calculi: name capture and control. Technical
Report PPS//03/11//n16, Université Paris VII (March 2003)

11. Berger, M., Honda, K., Yoshida, N.: A logical analysis of aliasing in imperative
higher-order functions. In: Danvy, O., Pierce, B.C. (eds.) Proceedings of the 10th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2005,
pp. 280–293. ACM Press, New York (2005)

12. Gabbay, M.J.: A NEW calculus of contexts. In: Proc of the 7th ACM SIGPLAN,
Symposium on Principle and Practice of Declarative Programmning, PPDP’05, pp.
94–105. ACM Press, New York (2005)

13. Knill, E.: Convention for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory (1996)

14. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. In: Proceedings of the
ACM SIGPLAN’94 Conference on Programming Language Design and Implemen-
tation (PLDI’94), pp. 24–35. ACM Press, New York (1994)

15. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

16. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML.
MIT Press, Cambridge, 1997 (revised)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

18. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002)

http://www.quantiki.org/wiki/index.php/Category:Introductory_Tutorials

162 F. Prost

19. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Transactions on
Programming Languages and Systems 25(1), 117–158 (2003)

20. Prost, F.: A static calculus of dependencies for the λ-cube. In: Proc. of IEEE 15th
Ann. Symp. on Logic in Computer Science (LICS’2000), IEEE Computer Society
Press, Los Alamitos (2000)

21. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 354–368. Springer,
Heidelberg (2005)

22. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Com-
put. 33(5), 1109–1135 (2004)

Using River Formation Dynamics to Design

Heuristic Algorithms�

Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio

Dept. Sistemas Informticos y Computacin
Facultad de Informática

Universidad Complutense de Madrid, 28040 Madrid, Spain
prabanal@fdi.ucm.es, {isrodrig,fernando}@sip.ucm.es

Abstract. Finding the optimal solution to NP-hard problems requires
at least exponential time. Thus, heuristic methods are usually applied
to obtain acceptable solutions to this kind of problems. In this paper we
propose a new type of heuristic algorithms to solve this kind of com-
plex problems. Our algorithm is based on river formation dynamics and
provides some advantages over other heuristic methods, like ant colony
optimization methods. We present our basic scheme and we illustrate its
usefulness applying it to a concrete example: The Traveling Salesman
Problem.

Keywords: Traveling Salesman Problem, Nature-based Algorithms,
Heuristic Algorithms, Ant Colony Optimization Algorithms.

1 Introduction

The nature has inspired the design of efficient computational algorithms for
decades (e.g. [10,11,2,13,14,9,5,8]). Though a myriad of computational problems
have been efficiently solved by conventional algorithms, nature-inspired methods
are useful because they face from an alternative point of view some computa-
tional problems that are known to be especially difficult. This is the case of
NP-hard problems, which are (strongly) supposed to require exponential time in
the worst case to be solved. Since it is not feasible in practice to optimally solve
these problems, optimal methods are substituted by heuristic algorithms that
usually need polynomial time to provide suboptimal solutions. In this regard,
we may consider the Traveling Salesman Problem [7,1] (TSP). This NP-complete
problem has attracted a lot of attention from researchers because, on the one
hand, finding optimal paths is a requirement that frequently appears in real ap-
plications and, on the other hand, it is a suitable benchmark problem to test
heuristic methods where global solutions are the result of local interaction pro-
cedures. In particular, these methods are based on the assumption that good

� Research partially supported by the MCYT project TIN2006-15578-C02-01, the
Junta de Castilla-La Mancha project PAC06-0008-6995, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 163–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 P. Rabanal, I. Rodŕıguez, and F. Rubio

hamiltonian cycles can be found by performing independent computations at
each node of the graph according to some local information (e.g., by taking into
account only adjacent nodes).

In this category we may find Ant Colony Optimization (ACO) algorithms [5,3].
In brief, they consist in copying the method used by ants to find good paths from
the colony to food sources. Ants release some amount of pheromone as they move,
and this pheromone attracts other ants. When an ant finds a path to the food
source, it takes the food back to the colony and repeats the path afterwards,
which reinforces the pheromone trail. This makes other ants follow it, which
reinforces it as well. Let us note that the pheromone trail tends to be stronger
in short paths than in long paths. This is because ants can fully traverse a short
path more times per unit of time than a long path, which increases the amount
of pheromone at each point. Moreover, let us suppose that an ant finds a path
to the food source that is shorter than other paths found so far. The new path
attracts some ants, which in turn reinforce the new path, and finally all ants
follow the trail (that is, only the shortest path is taken). Let us note that ACO
methods construct good global paths by applying a local scope mechanism at
each location (in particular, the pheromone reinforcement).

ACO methods provide efficient heuristic algorithms to solve TSP (see [4,3]).
However, they also suffer from some intrinsic problems. On the one hand, let
us note that this method lies in the idea that pheromone trails interact with
each other in such a way that good paths are cooperatively constructed by
ants. However, this characteristic is twofold. Sometimes paths may interfere and
damage each other. For instance, local cycles involving only some nodes may
be created and, even worse, be reinforced by subsequent ants. On the other
hand, sometimes a local oriented method like ACO may miss some simple graph
peculiarities such that, if they were taken into account, then they would allow
to easily find better paths. For instance, when a better path is found by ants,
it takes a lot of subsequent ant movements to reinforce the new path until it is
actually preferred to other older well-established paths.

Let us note that both problems are a consequence of the following property of
the method: When ants decide their next movement, only the pheromone trail
at each possible destination is taken into account, but the pheromone trail at the
origin is essentially ignored. Let us suppose that, instead of this, the difference
of trails between both places were considered, and this difference were required
to be positive in order to choose a given edge as next step (i.e., we require that
the pheromone trail is higher at the destination than at the origin). This would
help to avoid both problems considered before. On the one hand, it is impossible
that all edges in a cycle produce a positive increment, so cycles would not be
formed and fed back. Let us note that most problems concerning the reciprocal
interference of paths are due to local cycles. On the other hand, if the probability
that an edge is taken is proportional to the increment of pheromone trail and
inverse proportional to the edge cost, then a shortcut should be preferred from
the exact time it is discovered by an ant: If two sequences of edges from A to B

Using River Formation Dynamics 165

with different cost are available then the difference between the initial and final
pheromone trails is obviously equal in both paths, but costs are lower in the
shorter one. Hence, the edges in the shorter path are preferable. That is, it
would not be necessary that the proportion of ants following the better path
gradually increases until the pheromone trail of the shortest path is higher.

Though this alternative approach would help to overcome these problems, the
following question arises: How can we make pheromone trails to be increasing
along the steps of each path? In order to answer this question, it is better to give
the ant metaphor up and consider another framework. Actually, the alternative
framework will be based on nature as well, in particular in the river formation
dynamics. Let us consider that a water mass is unleashed at some high point.
Gravity will make it to follow a path down until it cannot go down anymore. In
Geology terms, when it rains in a mountain, water tries to find its own way down
to the sea. Along the way, water erodes the ground and transforms the landscape,
which eventually creates a riverbed. When a strong down slope is traversed by
the water, it extracts soil from the ground in the way. This soil is deposited later
when the slope is lower. Rivers affect the environment by reducing (i.e. eroding)
or increasing (i.e. depositing) the altitude of the ground. Let us note that if
water is unleashed at all points of the landscape (e.g., it rains) then the river
form tends to optimize the task of collecting all the water and take it to the sea,
which does not imply to take the shortest path from a given origin point to the
sea. Let us remark that there are a lot of origin points to consider (one for each
point where a drop fell). In fact, a kind of combined grouped shortest path is
created in this case. The formation of tributaries and meanders is a consequence
of this. However, if water flows from a single point and no other water source
is considered, then the water path tends to provide the most efficient way to
reduce the altitude (i.e., it tends to find the shortest path).

In this paper we present an algorithm based on these ideas called RFD (from
River Formation Dynamics algorithm) and we study how it allows to overcome
the problems commented above appearing in ACO methods. Besides, we apply
the method to TSP. The details of the method are discussed in the next sections.
In addition, our approach is compared with ACO and some results are reported.
It is worth to point out that, though the development of RFD is still in a pre-
liminary phase and has not been fully optimized yet (only some improvements,
out of a big set of available choices, have been implemented), current results are
especially promising. In particular, we observe the following property: Though
the time required to converge to a solution is a bit longer in RFD than in ACO,
the quality of solutions provided by RFD is better in general.

The rest of the paper is structured as follows. In the next section we present
the general algorithm developing these ideas. Then, in Section 3 this method is
particularized for TSP. Afterwards, in Section 4 we present an implementation
of the algorithm and we compare the results of our method with those obtained
using the ACO method. Finally, in Section 5 we present our conclusions and
some lines of future work.

166 P. Rabanal, I. Rodŕıguez, and F. Rubio

2 General Method

In this section we present our algorithm inspired on river formation dynamics. It
finds short paths in graphs, in general, and good solutions for TSP, in particular.
The particularization of the general scheme to TSP will be discussed in the next
section.

The method works as follows. Instead of associating pheromone values to
edges, we associate altitude values to nodes. Drops erode the ground (they re-
duce the altitude of nodes) or deposit the sediment (increase it) as they move.
The probability of the drop to take a given edge instead of others is propor-
tional to the gradient of the down slope in the edge, which in turn depends on
the difference of altitudes between both nodes and the distance (i.e. the cost of
the edge). At the beginning, a flat environment is provided, that is, all nodes
have the same altitude. The exception is the destination node, which is a hole.
Drops are unleashed at the origin node, which spread around the flat environ-
ment until some of them fall in the destination node. This erodes adjacent nodes,
which creates new down slopes, and in this way the erosion process is propa-
gated. New drops are inserted in the origin node to transform paths and reinforce
the erosion of promising paths. After some steps, good paths from the origin to
the destination are found. These paths are given in the form of sequences of
decreasing edges from the origin to the destination.

This method provides the following advantages with respect to ACO. On the
one hand, local cycles are not created and reinforced because they would im-
ply an ever decreasing cycle, which is contradictory. Though ants usually take
into account their past path to avoid repeating nodes, they cannot avoid to
be led by pheromone trails through some edges in such a way that nodes may
be repeated in the next step1. On the contrary, altitudes cannot lead drops to
these situations. On the other hand, when a shorter path is found in RFD, the
subsequent reinforcement of the path is fast: Since the same origin and destina-
tion are concerned in both the old and the new path, the difference of altitude
is the same but the distance is different. Hence, the edges of the shorter path
necessarily have higher down slopes and are immediately preferred (in average)
by subsequent drops. Moreover, let us note that the erosion process provides
a method to avoid inefficient solutions: If a path leads to a node that is lower
than any adjacent node (i.e., it is a blind alley) then the drop will deposit
its sediment, which will increase the altitude of the node. Eventually, the alti-
tude of this node will match the altitude of its neighbors, which will avoid that
other drops fall in this node. Moreover, more drops could be cumulated in the
node until the mass of water reaches adjacent nodes (a lake is formed). If water
reaches this level, other drops will be allowed to cross this node from one ad-
jacent node to another. Thus, paths will not be interrupted until the sediment
fills the hole. This provides an implicit method to avoid inefficient behaviors of
drops.

1 Usually, this implies either to repeat a node or to kill the ant. In both cases, the last
movements of the ant were useless.

Using River Formation Dynamics 167

2.1 Basic Algorithm

The basic scheme of the algorithm follows:

initializeDrops()

initializeNodes()

while (not allDropsFollowTheSamePath()) and (not otherEndingCondition())

moveDrops()

erodePaths()

depositSediments()

analyzePaths()

end while

The scheme shows the main ideas of the proposed algorithm. We comment
on the behavior of each step. First, drops are initialized (initializeDrops()),
that is, all drops are put in the initial node. Next, all nodes of the graph are
initialized (initializeNodes()). This consists of two operations. On the one
hand, the altitude of the destination node is fixed to 0. In terms of the river
formation dynamics analogy, this node represents the sea, that is, the final goal
of all drops. On the other hand, the altitude of the remaining nodes is set to
some equal value.

The while loop of the algorithm is executed until either all drops find the
same solution (allDropsFollowTheSamePath()), that is, all drops traverse the
same sequence of nodes, or another alternative finishing condition is satisfied
(otherEndingCondition()). This condition may be used, for example, for lim-
iting the number of iterations or the execution time. Another choice is to finish
the loop if the best solution found so far is not surpassed during the last n
iterations.

The first step of the loop body consists in moving the drops across the nodes
of the graph (moveDrops()) in a partially random way. The following transition
rule defines the probability that a drop k at a node i chooses the node j to move
next:

Pk(i, j) =

{
decreasingGradient(i,j)∑

l∈Vk(i) decreasingGradient(i,l) if j ∈ Vk(i)

0 if j "∈ Vk(i)
(1)

where Vk(i) is the set of nodes that are neighbors of node i that can be visited by
the drop k and decreasingGradient(i,j) represents the negative gradient between
nodes i and j, which is defined as follows:

decreasingGradient(i, j) =
altitude(i)− altitude(j)

distance(i, j)
(2)

where altitude(x) is the altitude of the node x and distance(i,j) is the length of the
edge connecting node i and node j. Let us note that, at the beginning of the algo-
rithm, the altitude of all nodes is the same, so

∑
l∈Vk(i) decreasingGradient(i, l)

is 0. In order to give a special treatment to flat gradients, we modify this scheme
as follows: We consider that the probability that a drop moves through an edge

168 P. Rabanal, I. Rodŕıguez, and F. Rubio

with 0 gradient is set to some (non null) value. This enables drops to spread
around a flat environment, which is mandatory, in particular, at the beginning
of the algorithm.

In the next phase (erodePaths()) paths are eroded according to the move-
ments of drops in the previous phase. In particular, if a drop moves from node
A to node B then we erode A. That is, the altitude of this node is reduced
depending on the current gradient between A and B. In particular, the erosion
is higher if the down slope between A and B is high. If the edge is flat then a
small erosion is performed. The altitude of the final node (i.e., the sea) is never
modified and it remains equal to 0 during all the execution.

As we commented before, the erosion process avoids in practice that drops
follow cycles because a cycle must include at least one increasing slope and,
according to the basic behavior presented before, drops cannot climb them up.
However, in ACO pheromone trails involving independent paths can interfere
with each other in such a way that ants feed cycles back and follow them2.

In addition, let us suppose that a new path, which is better than other paths
considered so far, is found. In RFD, the erosion quickly favors it against other
choices. This is because down gradients in the new path are preferable in average
to those of old paths: Globally, a different cumulated distance is traversed in both
paths, but the difference of altitudes is the same. This eases the subsequent task
of feeding the new path back so that not only steps are preferred in average,
but also each of them is individually preferred to other older choices. On the
contrary, when an ant finds a better path for the first time, the pheromone trail
may still be negligible compared to other older paths. Hence, this path must
be gradually fed back until the steps of the new path are preferred at least on
average.

Once the erosion process finishes, the altitude of all nodes of the graph is
slightly increased (depositSediments()). The objective is to avoid that, after
some iterations, the erosion process leads to a situation where all altitudes are
close to 0, which would make gradients negligible and would ruin all formed
paths.

Finally, the last step (analyzePaths()) studies all solutions found by drops
and stores the best solution found so far.

2.2 Basic Improvements

In this section we show some improvements we apply to the previous basic
scheme. As we said before, we allow drops to move through edges with a gradient
equal to 0. Going one step further, we apply the following improvement: We let
drops climb increasing slopes with a low probability. This probability will be
inverse proportional to the increasing gradient. This new feature improves the
search of good paths. Let us note that solutions found during the first steps

2 Let us note that, in order to feed a cycle back, it is not necessary that an ant actually
follows the cycle. It is enough that each ant reinforces a different part of the cycle
in such a way that all parts are individually reinforced.

Using River Formation Dynamics 169

tend to bias the exploration of the graph afterwards. This is because previously
formed paths tend to be followed by subsequent drops. Enabling drops to climb
increasing slopes with some low probability allows to find alternative choices and
enables the exploration of other paths in the graph. This partially decouples
the method from its behavior in the first steps. Actually, the probability of
climbing increasing slopes encapsulates most of the dependency of the method
on previous solutions in a single value. As usual in heuristic search algorithms,
this dependency must provide a suitable tradeoff between past solutions and
alternative choices.

In addition, the probability of climbing increasing slopes will be reduced dur-
ing the execution of the algorithm, that is, for each new iteration this probabil-
ity is slightly reduced. After performing some iterations, the exploration of the
graph will be sufficient, so the necessity of searching more alternative choices
will be reduced (recall that we reduce the probability of climbing slopes, but the
probability of following edges which do not have the highest decreasing gradient
remains the same). Besides, we borrow the following idea from Simulated An-
nealing methods (see [10,6]). In addition to constantly reducing the probability
that a drop takes an increasing slope, we add the following feature: Every N iter-
ations, this probability is increased instead of slightly reduced. On the one hand,
this reduces the dependency on (bad) older well established solutions because we
periodically enable to search other alternative choices. On the other hand, paths
that are actually good will survive to this periodic tilting action. Let us note
that bad paths in the short term may turn out to be good in the long term. So,
this technique helps to avoid getting blocked in local optima. The probability of
taking increasing slopes is incremented in such a way that decrements surpass
them in the overall, that is, this probability globally tends to 0.

Enabling drops to climb slopes implies that the probability that a drop tra-
verses a local cycle is not 0. However, the method still provides an effective way
to avoid that drops traverse cycles in practice. On the one hand, the probability
of this is low because a cycle must contain at least one increasing slope. In par-
ticular, if there is only one increasing slope then it must compensate the rest of
decreasing slopes, so its increasing gradient must be high. Since the probability
of climbing an increasing slope up is inverse proportional to the gradient, the
probability of climbing this slope is very low. Moreover, as we said before, the
probability of climbing up slopes is reduced along time. On the other hand, the
probability that an ant follows a local cycle in ACO increases as long as all edges
of the cycle are still being reinforced (recall that each edge could be reinforced
by an ant following a different path).

We also enable drops to deposit sediment in nodes, which was not considered
in the basic scheme presented before. This happens when all movements available
for a drop imply to climb an increasing slope and the drop fails to climb any edge
(according to the probability assigned to it). In this case, the drop is blocked and
it deposits the sediments it transports. This increases the altitude of the current
node. The increment is proportional to the amount of cumulated sediment. As
we said before, this allows to gradually punish paths leading to blind alleys.

170 P. Rabanal, I. Rodŕıguez, and F. Rubio

Eventually, the cumulated sediment increases the altitude of this node until it
matches the altitude of nearby nodes. At this moment, slopes leading to this node
will not be decreasing anymore. This will prevent other drops from following this
path.

The last improvement consists in gathering drops to reduce the number of
individual movements. Drops in the same node are gathered into a single drop
with higher size (i.e., the caudal is increased). In this way, we can handle a single
drop of size N instead of N drops of size 1. At the beginning, a drop of size N
is located in the the first node. Later, when the drop is moved and there are
several choices to move next, the drop is split into drops of smaller size, each of
them following a different path. Gathering drops allows to reduce the number
of decisions made by the algorithm at each step because there are less drops to
consider: Instead of spending computational effort in moving each drop, a single
decision for each group is taken. This improves the efficiency of the method. Let
us note that, in the worst case, a drop is split into drops of size 1 and each of
them does not join an alternative caudal afterwards, that is, the size of each
remains equal to 1. Thus, we have the case where drops are not gathered.

When we move a big drop we act as follows. Let us assume that trunc(X)
returns the integer part of X . First, we consider the probabilities of taking each
choice if the size of the drop were 1. Then, we use these probabilities to deter-
ministically split the drop into parts, moving each of them to each destination.
This is done as follows: If a drop of size 204 is at node A and its available
destinations are B, C, and D, with probabilities 0.35, 0.22, and 0.43, respec-
tively, then a drop of size trunc(204 · 0.35) = trunc(71.40) = 71 moves to
A, a drop of size trunc(204 · 0.22) = trunc(44.88) = 44 moves to C, and a
drop of size trunc(204 · 0.43) = trunc(87.72) = 87 moves to D. The remaining
204− (71+44+87) = 2 drops are (randomly) moved as single drops by applying
formula (2) presented in the previous section.

3 Applying the Method to TSP

All previous discussions concern the application of the method to the general
case, that is, to find a good path in a graph from a node to another. However,
in this section we will apply this approach to TSP. We can summarize TSP as
follows: Given a set of cities and the costs of traveling from any city to any
other city, compute the cheapest round-trip route that visits each city exactly
once and then returns to the starting city. Note that, since we are looking for
a cyclic tour, it is irrelevant what concrete node is the origin of the tour: The
cycle A-B-C-D-A has the same length as B-C-D-A-B or C-D-A-B-C.

Facing this problem requires to particularize the previous general framework.
First, let us remark that the goal of TSP consists in finding a cycle in the graph:
We traverse all the nodes (cities) of the graph and return to the departure
node. However, in RFD any cycle must include at least one increasing slope.
Since solutions are given in the form of sequences of decreasing edges, the basic
scheme presented in the previous section must be slightly adjusted. In order to

Using River Formation Dynamics 171

allow a decreasing slope from a node to itself, we will clone the origin/destination
node into two separated nodes. In this way, each instance will be able to have a
different altitude. In fact, the cloned node will have altitude 0, which represents
that it is the destination node.

A second special feature of the problem is that we need to find a path visiting
all the nodes of the graph. Thus, each drop needs memory to remember what
nodes have not been visited yet. Let us remark that the memory is also needed
when using ACO because ants also need to remember what nodes have not been
visited yet.

In the general scheme presented in the previous section, nodes are eroded im-
mediately after moving each drop. However, in the adaptation to TSP presented
in this section drops will not erode nodes immediately after each movement. On
the contrary, the erosion of the path will not be performed until the drop reaches
the final destination. At this time, all nodes traversed in the path will be eroded
according to the gradients of the corresponding edges. Let us suppose that a
solution A-B-C-D was found by a drop. Then, the altitude of A is reduced ac-
cording to the gradient between A and B, the altitude of B is reduced according
to the gradient between B and C, and so on. The path traversed by the drop
is extracted from its memory. Note that some drops will not find a solution in
their tours. In that case, the drop will be evaporated or it will produce sediments,
depending on the reason why the drop did not find a complete path. Thus, for
each drop there are three possibilities:

(a) The drop finds a solution. In this case the drop finds a way to traverse all
the cities passing through each city only once and returning to the city of
origin. Thus, the drop actually erodes the path it has followed.

(b) The drop evaporates. This is done when the drop does not find a solution
because, at a given moment, all adjacent cities had already been visited. In
this case, the drop does not contribute with information to the solution, that
is, the path it traversed is not eroded.

(c) The drop deposits sediments. This is done when the drop does not find a
solution because, at a given moment, the altitude of all the adjacent cities
is higher than the altitude of the current city. In this case, the drop deposits
its sediments in this valley city, increasing its height.

An additional improvement can be considered when eroding a solution in case
(a): Nodes can be eroded in proportion to the quality of the solution found by
the drop (that is, in inverse proportion to the overall length of the path). In this
way, decreasing slopes are eroded faster in good paths. In particular, the erosion
of a bad edge (e.g. with a low decreasing slope) is high if the edge is actually
part of a good path.

Finally, let us comment on an important detail needed to solve TSP by using
RFD. Let us suppose that a solution A-B-C-D-E-A′ is found (being A′ the clone
of A playing the role of destination node). Drops create a decreasing gradient
along this path. In particular, the altitude of B is higher than the altitude of
C, this one is higher than D, and D is higher than E. Let us also suppose that

172 P. Rabanal, I. Rodŕıguez, and F. Rubio

Fig. 1. Application interface Fig. 2. Altitudes in a solution

there exists an edge from B to E. Since the difference of altitude between B
and E is the addition of the differences between B and C, C and D, and D and
E, the decreasing gradient from B to E could be so big that drops prefer to go
directly from B to E. However, in that case drops will fail in finding a solution:
C, D, and E would not be included in this path, but solutions must traverse
all nodes. In order to avoid that the altitude of adjacent nodes wrongly deviates
formed paths, an auxiliary node will be created at each edge of the graph. These
auxiliary nodes, that we call barrier nodes, will also be part of the solution.
In fact, barrier nodes being part of a solution will be eroded (like the rest of
nodes), while barrier nodes that are not part of a solution will not be eroded. In
the previous example, the solution A-B-C-D-E-A′ will be represented as A-ab-
B-bc-C-cd-D-de-E-ea′-A′, being ab the barrier node appearing between A and
B, and so on. These barrier nodes will be eroded when finding this solution.
However, the barrier node between B and E, be, will not be eroded by drops
following this path. Drops directly moving from B to E do not find a solution,
so node be will not be eroded by an alternative path. Thus, the altitude of node
be will remain high and drops at B will not prefer moving to be. That is, be
imposes a barrier between B and E.

Let us note that barrier nodes must be taken into account in the initialization
and sedimentation phases of the algorithm. In the initialization phase, we must
set the height of barrier nodes. This height will be the same as the height of
the rest of nodes of the graph. Regarding the sedimentation phase, it will be
necessary to increase their heights in the same way as any other node.

4 TSP Implementation and Results

In this section we present an implementation of our approach to solve TSP and
we compare the experimental results of our algorithm and ACO. We identify
the situations where RFD surpasses ACO and we study the reasons for this.
All the experiments were performed in an Intel T2400 processor with 1.83 Ghz.

Using River Formation Dynamics 173

Fig. 3. Results for a 20 (left) and 30 (right) nodes random graph

Fig. 4. Results for the TSPLIB eil51 graph

Figure 1 shows the interface of the application we developed to implement both
methods and Figure 2 depicts an example of solution found by RFD. It shows
the altitudes of the nodes of the path in the order they are traversed.

Let us present our experimental results. Figure 3 (left) shows the results of an
experiment where the input of both algorithms was a given randomly generated
graph with 20 nodes. The graphic shows the best solution found by each algo-
rithm for each execution time. Figure 3(right) shows the results obtained after
applying both methods to a random graph with 30 nodes. Next, in Figure 4
we show the results obtained for a graph taken from the TSPLIB library [12].
TSPLIB is a library of sample instances for TSP from various sources and of
various types. Nodes are defined by means of points in a 2D plain and there is
an edge between all pairs of nodes. The distance of each edge is the Euclidean
distance between both points of the plain. Figure 4 shows the results after apply-
ing the graph eil51 from TSPLIB (with 51 nodes) to both methods. The basic
shape shown in the figure is usually obtained with more benchmark examples.

Before we analyze the results shown in these figures, let us comment on how
the ACO approach and the RFD approach were compared in each experiment.
The number of ants in ACO and the number of drops in our approach does not
coincide in each experiment. For each graph, we analyzed the number of ants

174 P. Rabanal, I. Rodŕıguez, and F. Rubio

(respectively drops) that provided the best solutions in the ACO algorithm (resp.
in RFD). We observed that the optimal number of entities traversing each graph
was different in both approaches. For example, for the graph with 51 nodes,
the number of ants was set to one thousand and the number of drops was set
to one hundred because we observed that one thousand and one hundred were
the optimal choices for each method. Let us note that moving an ant does not
require exactly the same computational effort than moving a drop. Moreover,
the effect caused by moving each of them in terms of its partial contribution to
future solutions (i.e., in terms of higher pheromone trails and lower altitudes,
respectively) is different. Since both entities are not comparable, assessing the
performance of both algorithms with the same number of populations is not
appropriate. On the contrary, we compare both methods by applying the optimal
population in each case.

We extract the following conclusions from the experimental results. We ob-
serve that ACO provides good solutions in short times. This is because ants tend
to converge through the same path in short times. On the other hand, the solu-
tions found by RFD after short execution times are poor. However, after some
time, the quality of the solutions of the RFD method surpasses the quality of the
solutions provided by ACO. That is, the convergence of drops is achieved later
than the convergence of ants, but better paths are traversed by drops. Hence,
RFD is the best choice if the quality of the solutions is more important than the
time needed to achieve them.

There are several reasons for this difference in both approaches. First, let us
note that slopes formed by drops tend to form a general movement tendency
for subsequent drops. This tendency leads drops from the origin node to itself
(in our method, to its clone) in an established direction. It is similar to the
case that we take a Billiard table and we gradually tilt it towards a corner
pocket. This tendency allows drops to homogeneously explore the graph after
some iterations, that is, edges are explored regardless of their distance to the
origin/destination node. However, this general tendency is lower in ACO meth-
ods because pheromone trails in edges do not impose a given direction to ants.
If an edge from A to B has a high pheromone trail then ants at A try to go to B,
and ants at B tend to go to A. Hence, general tendencies to explore the graph
are more difficult to create, and ants tend to cumulate themselves in specific
local areas because the exploration of each zone feeds itself back. This allows to
improve the exploration of areas already traversed, but makes it more difficult
to explore other alternative zones. The result is that the convergence is faster
in the ACO method than in RFD, but the solutions found by ACO are worse
because the exploration is focalized.

Another reason for this behavior is related to the way a new shortcut is
reinforced in our method. As we already commented in previous sections, when
a shorter path is found by drops, it is easy for subsequent drops to reinforce
this path until it is preferred in all cases to other choices. This is because the
new path is actually attractive for other drops from the time the reinforcement
begins. We could argue that, if shorter paths are reinforced quickly, then the

Using River Formation Dynamics 175

preference of drops for short paths would accelerate their convergence on the
cost of ignoring other paths that are bad in the short term (but may be good in
the long term). That is, we have a reason to obtain an opposite behavior to the
one commented before. However, we observed the following behavior: Since short
paths quickly become attractive choices, it is usual that, at the same time, there
are several new attractive choices challenging older longer paths. As long as these
new alternative paths confront each other, drops have several attractive choices
to move next. This enables a deeper exploration of the graph (and, paradoxically,
a slower overall convergence).

The way in which we handle the sedimentation in RFD also favors this behav-
ior. Recall that we allow drops to deposit sediments in blind alleys. Eventually
this fills the hole, which avoids that other drops follow the same wrong path. As
a consequence, drops perform a try and fail mechanism where new paths are it-
eratively formed/blocked until good paths are found. This also enables a deeper
exploration of the graph, leading to better solutions and longer execution times.

As we commented in previous sections, our method avoids in practice that
drops follow local cycles, which would lead to situations where all edges avail-
able from a node connect to repeated nodes. Being provided with an intrinsic
method to avoid the repetition of nodes (in our case, the difference of altitudes)
lets drops spread around the graph, which also improves the exhaustiveness
of the exploration. However, the main consequence of this characteristic is the
following: The number of drops that must be eliminated because they lead to
repeated nodes is lower than the number of ants that must be eliminated for the
same reason.

Let us note that in RFD drops are also eliminated when all adjacent nodes
are higher than the current node. Thus, there is a reason to eliminate drops
in RFD that does not exist in ACO. However let us note that, when a drop is
blocked in a valley, the drop deposits its sediment. That is, the drop contributes
to transform the graph values and its existence is actually useful for subsequent
drops. On the other hand, a blocked ant is useless for the method because it
disappears without modifying any pheromone trail (note that an ant modifies
trails only when it finds a solution). Hence, the computational effort spent to
move it was lost.

5 Conclusions and Future Work

In this paper we have presented a new heuristic method to solve complex prob-
lems. The method is inspired on the way rivers are created in nature. By using
it, we can obtain acceptable solutions to NP-hard problems in reasonable times.
Our method obtains competitive results when compared with other more ma-
tured schemes, like ants colonies. In the TSP case study, our current experimental
results shows that the RFD method is preferable to ACO if the optimality of
the solution is the main requirement. The fast reinforcement of shortcuts, the
avoidance of local cycles, the punishment of wrong paths, and the creation of
global direction tendencies motivate these results.

176 P. Rabanal, I. Rodŕıguez, and F. Rubio

Our current lines of work are divided in two parts. First, we are working on
optimizing our basic scheme. For instance, we may consider the following new
directions of improvement: Masses of water could be considered as part of the
altitude of nodes (currently, only the altitude of the ground is considered); the
number of drops moved across the environment, which currently is constant from
the first step, could vary along the execution depending on the convenience of
parallel/focused exploration; in order to improve the mechanism to avoid wrong
paths, sediments could be deposited not only in standard nodes but also in
barrier nodes; an hybrid ants/drops approach, where the weight of each method
varies along the execution, could be constructed. This would allow to get the
best characteristics of each method in a single approach.

Second, we are also applying RFD to solve a wider set of problems. First, we
are considering the exploration of dynamic graphs, that is, graphs where edges
may appear and disappear along time. We have reasons to expect that this will be
a suitable application case for our method. If an old path is suddenly blocked then
the sedimentation mechanism and the way in which shortcuts are reinforced will
allow drops to quickly avoid the blocked path and find alternatives. In addition,
we want to explore the problem of finding optimal grouped solutions from several
origins to a single destination. As we commented in the introduction, rivers do
not follow optimal paths from a single point to the sea. On the contrary, they
optimize the task of gathering and transporting the water from each point where
it rains (i.e., millions of departure points) to the sea through a grouped path.
Following this idea, we can apply RFD to the problem of finding optimal paths
for public transportation lines, that is, to decide the best path to gather and
transport population from residential areas to e.g. the city center.

Acknowledgments

We would like to thank the anonymous reviewers for valuable comments on a
previous version of this paper. Moreover, we would also like to thank Manuel
Núñez and Natalia López for interesting discussions on the topic of the paper.

References

1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton University Press, Princeton,
NJ (2006)

2. Davis, L. (ed.): Handbook of genetic algorithms. Van Nostrand Reinhold, New
York (1991)

3. Dorigo, M.: Ant Colony Optimization. MIT Press, Cambridge (2004)

4. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem.
BioSystems 43(2), 73–81 (1997)

5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part
B 26(1), 29–41 (1996)

Using River Formation Dynamics 177

6. Fleischer, M.: Simulated annealing: past, present, and future. In: Proceedings of
the 27th conference on Winter simulation, pp. 155–161 (1995)

7. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Kluwer Academic Publishers, Dordrecht (2002)

8. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley-Interscience, New
York, NY, USA (2004)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, 1995, vol. 4 (1995)

10. Kirkpatrick, S., Gelatt, Jr., C.D., Vecchi, M.P.: Optimization by Simulated An-
nealing. Science 220(4598), 671 (1983)

11. Langton, C.: Studying artificial life with cellular automata. Physica D 22, 120–149
(1986)

12. Reinelt, G.: TSPLIB 95. Technical report, Research Report, Institut für Ange-
wandte Mathematik, Universität Heidelberg, Heidelberg, Germany (1995),
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

13. Rosenberg, G., Salomaa, A. (eds.): Lindenmayer Systems: Impacts on Theoreti-
cal Computer Science, Computer Graphics, and Developmental Biology. Springer,
Heidelberg (1992)

14. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, London, UK
(1994)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Principles of Stochastic Local Search

Uwe Schöning

Institute of Theoretical Computer Science
Ulm University

89069 Ulm, Germany
uwe.schoening@uni-ulm.de

Abstract. We set up a general generic framework for local search
algorithms. Then we show in this generic setting how heuristic, problem-
specific information can be used to improve the success probability of lo-
cal search by focussing the search process on specific neighbor states. Our
main contribution is a result which states that stochastic local search us-
ing restarts has a provable complexity advantage compared to determin-
istic local search. An important side aspect is the insight that restarting
(starting the search process all over, not using any information computed
before) is a useful concept which was mostly ignored before.

Keywords: local search, stochastic local search, heuristic information,
restart, meta-algorithmics.

1 Introduction

As compared to standard algorithm design techniques, local search algorithms
perform a quite unconventional computation since in most cases the problem-
specific evaluation function (for example, the number of unsatisfied constraints,
the length of the TSP tour found so far, etc.) can only give a weak guidance
information regarding what is the best direction for choosing the next local
search step. Therefore, especially to escape the situation of getting stuck in local
optima, up to a certain amount, randomness is used to give the search process
the chance to find a way out of “dead ends.” But randomness alone (so-called
“uninformed search”) does not help either, and is a poor strategy.

In this work we set up a general framework for modelling local search algo-
rithms (which is more or less the standard one.) Then, under the assumption,
that problem-specific (“heuristic”) information about the problem in question is
available which allows to focus the search on a certain well-chosen subset of the
neighbors of a state, a rigorous probabilistic analysis of local search is possible.
The master example where such heuristic information indeed is available, is SAT,
or k-SAT. But also for other types of problems this approach might be applica-
ble. Our analysis results in precise probability estimations for finding a solution,
and shows that stochastic local search has a provable complexity advantage as

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 178–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Principles of Stochastic Local Search 179

compared to deterministic (backtracking-like) local search. An additional out-
come of the analysis is that it is much better to restart the search process several
times, just after a few unsuccessful local search steps, than to continue the lo-
cal search process towards the stationary (Markov chain) distribution. This is
in contrast to many text book opinions where one can find the statement that
restarting a local search process is usually a “poor strategy.”

2 Modelling Local Search Algorithms

The following first definitions are standard when modelling the scenario of local
search (see e.g. [1,8,9,10,13].)

Definition. A local search scenario for a combinatorial decision (or optimization
problem) Π is given by the following components. Given an input instance π,
one can associate with π the following items

– a search space S. The elements of S are called candidate solutions or states,
– a set S0 ⊆ S of (optimal) solutions,
– a neighborhood relation N ⊆ S × S. (We sometimes use N in unary (func-

tional) form so that N(x) denotes the set of all y such that (x, y) ∈ N .)
– the solution distance d(x) of a state x ∈ S is defined by

d(x) = min {k | ∃x1, . . . , xk∈S :

(x, x1)∈N, (x1, x2)∈N, . . . , (xk−1, xk)∈N, xk ∈S0}

Example. The well known problem SAT is, given a formula π in propositional
logic, find an assignment a for the Boolean variables occuring in π which satisfies
formula π. Let the formula π have n Boolean variables. Then the candidate
solutions are all the possible assignments to these variables. As it is often the
case, the candidate solutions, the elements of the search space S, can be divided
into n components a = (a1, a2, . . . , an), ai ∈ {0, 1}. For each component there
are, in this case, two possible selections, namely, 0 and 1. (For more general
constraint satisfaction problems there might be more selections per component.)
Therefore, in this case, the search space is S = {0, 1}n, and |S| = 2n. The
solution set is S0 = {a ∈ S | a satisfies π}. Two assignments a, a′ are neighbors
of each other, i.e. (a, a′) ∈ N , and (a′, a) ∈ N , if and only if they differ in
exactly one component. In other words, if their Hamming distance is 1. The
solution distance of an assignment a is the minimal number of bits that have
to be flipped to arrive at a satisfying assignment. This is the smallest possible
number of local search steps, starting from x, that might lead to a solution.

The above definitions are specific to the respective problem Π (although for
the same problem Π there might be several useful definitions of the state space
and the neighborhood relation.) More towards the design of a particular local

180 U. Schöning

search method for solving Π are the following definitions (and therefore we have
separated them from the above definitions.) We already define a basic stochastic
local search algorithm for Π if we specify the following items, possibly using
problem-specific, heuristic information:

– An initial probability distribution D on S. (Let PD(x) denote the probability
that candidate x ∈ S is selected under this initial distribution.)

– for each x ∈ S, a local search probability distribution L(x) on the set of
neighbors of x, i.e. on N(x) = {y ∈ S | (x, y) ∈ N}. (Let PL(x)(y) denote the
probability that y is selected in the local search step starting with the state
x, where PL(x)(y) = 0 if (x, y) "∈ N .) We allow the situation PL(x)(y) = 0
for all y ∈ N(x), or also the case N(x) = ∅, then we let PL(x)(⊥) = 1 where
⊥ is a special state which indicates “failure”.

Once these probability distributions are specified, the generic local search
algorithm for problem Π works as follows.

INPUT π

Choose an initial candidate solution x ∈ S according to distribution D

WHILE (x "∈ S0 AND x "=⊥) DO
Replace x by one of its neighbors y, (x, y) ∈ N , selected according
to distribution L(x)

END-WHILE

In the case of an optimization problem Π it is not possible to test whether
x is an optimal solution, i.e. x ∈ S0, efficiently. In this case often an evaluation
function f is used which evaluates the quality of the obtained candidate x.
The value of f becomes optimal (maximal or minimal) iff x ∈ S0. If the value
f(x) did not change for some time, this might be a criteria for stopping. Also,
the definition of L(x) might be based on the f -values of x and its neighbors
y ∈ N(x). In the simplest implementations it might be the case that PL(x)(⊥
) = 1 if there is no neighbor y ∈ N(x) with better f -value than f(x). This
describes the well known problem of getting stuck in some local optimum, an
issue which is the main concern in several books and publications on local search
[1,3,8,9].

The following illustrates this problem from a different perspective. Assume,
starting from initial candidate x0, we follow some path x0, x1, . . . , xk such
that (x0, x1) ∈ N, (x1, x2) ∈ N, . . . , (xk−1, xk) ∈ N , and d(x0) = k, d(x1) =
k − 1, . . . , d(xk) = 0, i.e. xk ∈ S0. At the same time we observe the values
f(x0), f(x1), . . . , f(xk). When we normalize both sequences (the d(.)-values, and
the f(.)-values) such that both start with 1 and end with 0, the picture might
look like this:

Principles of Stochastic Local Search 181

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

1

0
0 k

d

f
�

����
�
�
�
�
�����

�������
�
�
�

This means, except from the starting and ending point and a general ten-
dency there are only few similarites between both curves. On the other hand, to
compute the function d(x) exactly is just as hard as solving the original problem
Π . If we could calculate d(y) exactly for all the neighbors of x we can select that
one which minimizes the solution distance.

Example. In the SAT example mentioned above, a natural (and often used)
way to define f(x) for an assignment x, and a given formula π in conjunctive
normal form (clause form) is to let

f(x) = number of unsatisfied clauses in π under assignment x

Indeed, as the above figure indicates, there is not very strong correlation between
f(x) and the solution distance d(x).

A direct, naive way of defining the inititial distribution for SAT is to assign each
assignment x ∈ {0, 1}n the same probability, PD(x) = 2−n. A similar direct way
of defining the local search probability is to assign each neighbor of x the same
probability, i.e.

PL(x)(y) =
{

1/n, if y ∈ N(x),
0, otherwise

This does not result in a good local search algorithm. The probability that such a
random local search step according to distribution L(x) will decrease the solution
distance is d(x)/n, that is, the closer x is to the desired solution, the harder is
it to come even closer.

3 Heuristic Information and Markov Chain Analysis

In [11,15,16], in the case of k-SAT, a different local search probability distribution
is used. This restricted neighborhood can be understood as bringing in some

182 U. Schöning

problem-specific heuristic information. Given an assignment x which does not
yet satisfy the k-CNF formula π, there will be at least one clause in π which is
not satisfied. Let σ be one (e.g. the first) such clause. The clause σ contains k

variables (negated or non-negated). Let Nσ(x) be the subset of N(x) of size k

which contains those neighbors of x where exactly one bit of x is flipped and
this bit belongs to a variable in σ. We let

PL(x)(y) =
{

1/k, if y ∈ Nσ(x),
0, otherwise

In this case, using L(x) for a local search step, the probability of decreasing d(x)
by 1 is (at least) 1/k (since in a satisfying assignment there should at least one
of the k bits be flipped to satisfy the clause σ), and this is better than the above
naive approach once the solution distance d(x) is at most n/k. Indeed, as shown
in [11], the expected number of local search steps until a solution is found, is
quadratic in n, in the case of 2-SAT. The case k > 2 is handled in [15,16]. The
probability that a single run of 3n local search steps will find a solution is shown
to be at least 1

p(n) · (
k

2k−2)n where p is some (small) polynomial.

It is clear that this basis version of a local search algorithm will only be
successful with some probability, depending on the choice of D and L(x), as
indicated by the SAT example above. Therefore, it is a good idea to restart
the basis algorithm several times with independent new initial solution candi-
dates. This is realized in the following program (here t is some parameter which
indicates the number of local search steps until to restart.)

INPUT π

REPEAT FOREVER
Choose an initial candidate solution x ∈ S according to
distribution D; set i := 0
WHILE (x "∈ S0 AND x "=⊥ AND i ≤ t) DO

i := i + 1
Replace x by one of its neighbors y, (x, y) ∈ N ,
selected according to distribution L(x)

END-WHILE
IF x ∈ S0 THEN STOP successfully

REPEAT-END

The behavior of this stochastic local search algorithm can be understood as
a Markov chain in the following way.

We can understand the probability distribution D as a vector of length |S|.
By [D]x we indicate the component indexed by x ∈ S in D, i.e. [D]x = PD(x).

Similarly, we can understand the set of all L(x) for x ∈ S as a |S| × |S|
stochastic matrix, denoted ML, where the (x, y)-th entry in this matrix ML

denotes the probability PL(x)(y).

Principles of Stochastic Local Search 183

The result of the t-fold vector-matrix multiplication D · (ML)t is a vector
of length |S|. The component indexed by x ∈ S indicates the probability that
state x is reached after the initial random choice followed by t local search steps.
Therefore, the “success probability”, the probability of reaching a solution within
one run of the REPEAT-loop, is given by

p =
∑
x∈S0

[D · (ML)t]x

If we could calculate or estimate p (which is quite difficult), then an appropriate
number of restarts (number of REPEAT-loops) would be c/p for some con-
stant c. This is so, since the probability of missing a solution in each of the c/p

trials is
(1− p)c/p ≤ (e−p)c/p = e−c

It is difficult to calculate p since the respective vector D and the matrix ML

are exponential in the size of π, and both, D and ML, depend individually on
the input instance π. We could greatly simplify the analysis, if

– it is possible that the complexity analysis depends merely on the input size
n = |π|, and not on π itself,

– if the number of states of the Markov chain (that is, the vector D, and the
matrix ML) can be reduced.

These requirements can indeed be fulfilled if we divide the search space S (the
set of states) into a few categories (equivalence classes), like

S = S0 + S1 + · · · + Sn

and we base the Markov chain (and its analysis) on these “super states”. A quite
natural division of S into categories is in terms of the solution distance. Define

Si = {x ∈ S | d(x) = i}

Example. Continuing the above SAT example it can be seen, that a Markov
chain approach using the “super states” 0, 1, . . . , n, indicating the solution dis-
tance d(x) of the actual assignment x, can be used. Consider the case of k-SAT,
and let Yt be a random variable describing the state number at time t. Then Y0

is determined by the initial distribution D:

P (Y0 = j) =
(

n

j

)
2−n

The transition probabilities from time t to time t + 1 are as follows.

P (Yt+1 = j − 1 | Yt = j) =
1
k

and P (Yt+1 = j + 1 | Yt = j) =
k − 1

k

184 U. Schöning

Let q(t, j) = P (Yt = 0 | Y0 = j), i.e. the probability that the state 0 (which
indicates that a solution is found) is reached after exactly t steps, under the
condition that the initial solution distance is j. Clearly, we have q(t, j) = 0 for
t < j. For t = j we have q(t, j) = (1

k)j , and in the general case, t > j, letting
t = (1 + α)j, we get (using the ballot theorem, cf. [6]),

q((1 + α)j, j) =
(

(1 + α)j
αj/2

)
· 1
1 + α

·
(
(
k − 1

k
)α/2 · (1

k
)1+α/2

)j

Asymptotically, and concentrating on the exponential terms, we can approximate
this probability as follows.

q((1 + α)j, j) ≈
[
2h(α

2(1+α))(1+α) · (k − 1
k

)α/2 · (1
k

)1+α/2
]j

=: βj

where h is the binary entropy function [2]. The following figure shows β as a
function of α.

�

� α

β

0 2
k−2

1
k

1
k−1

In the beginning (i.e. α = 0, that is, t = j) we have β = 1/k, but the highest
value, β = 1/(k−1) is reached later when α = 2/(k−2), that is, t = j ·k/(k−2).
We find this quite surprising. It shows an advantage of stochastic local search
as compared to deterministic local search, which, in this case would explore the
states, starting from the initial state x up to states within Hamming distance j.
Then a solution would be found. Doing this systematic search in a backtracking
fashion (as in [14,4,5]) requires kj search steps (= recursive calls of the search
procedure), whereas the probability of finding the solution in a single run of
stochastic search of at least j · k/(k− 2) (not just j) steps is (1/(k− 1))j . Using
O((k−1)j) restarts, as explained above, this results in an algorithm which finds
the solution (of distance j) almost surely.

4 Restarts

To make the discussion complete, we need to combine this analysis of the local
search process (given that the solution distance is j) with the initial random
distribution D. Altogether we combine a random initial choice of a solution

Principles of Stochastic Local Search 185

candidate, followed by at least j · k/(k− 2) local search steps according to L(x).
Since we don’t know the particular j in advance, we can use the upper bound
n · k/(k− 2) for the number of local search steps before to restart. The resulting
success probability is

n∑
j=0

(
n

j

)
· 2−n · (1

k − 1
)j = (

k

2k − 2
)n

by the binomial theorem. Let r(t) be the probability that we reach a solution
after exactly t local search steps, following the initial guess of a candidate. Then
this function reaches its maximum at t = n/(k − 2), where this maximum value
conicides, up to polynomial factors, with the above, namely βn = (k

2k−2)n. The
following picture indicates the situation.

�

� t

β

0 n
k−2

r(t)1/n
k

2k−2

Now it should be clear that it is not the best strategy to make just a single
run of the local search algorithm until eventually a solution is reached. Apart
from these theoretical results, experiments with this “pure random walksat”
procedure, as reported in [12], page 99ff, or in [7], page 258ff, suggest that the
algorithm becomes trapped in a “metastable state” for a very long time, and
does not reach the solution during this phase. Therefore, a much better strategy
is to restart after t0 > n

k−2 steps if no solution was found so far. This strategy
results in a picture like the following.

� t

β

0 n
k−2 t0 2t0

�

186 U. Schöning

In the first phase, for 0 ≤ t ≤ t0, let the probability of finding a solution be p

(up to a polynomial factor we have p = (k
2k−2)n). Then the probability of finding

a solution, not in the first, but in the second phase, is (1− p) · p, and in general,
for the i-th phase, (1−p)i−1 ·p. These probabilities are much greater than in the
above situation (without any restart), which are, up to some polynomial factor,
r(t0), r(2t0),

Usually, when using a Markov chain approach to analyze a random algorithm
it is the issue of rapid mixing which is of concern, i.e. reaching the stationary
distribution quickly. It is interesting to note that the situation here is quite dif-
ferent. The probability of finding a solution is highest within a certain initial
number of steps, afterwards when reaching the stationary distribution, it de-
creases drastically. Therefore, restarting is an important concept here which, in
our opinion, has been neglected so far.

Acknowledgement

I would like to thank Hans Kestler for many productive and intuitive discussions
on the subject.

References

1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton
University Press, Princeton, NJ (2003)

2. Ash, R.B.: Information Theory. Dover, Mineola, NY (1965)
3. Bolc, L., Cytowski, J.: Search Methods for Artificial Intelligence. Academic Press,

San Diego (1992)
4. Dantsin, E., Goerdt, A., Hirsch, E.A., Schöning, U.: Deterministic algorithms for k-

SAT based on covering codes and local search. In: Welzl, E., Montanari, U., Rolim,
J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 236–247. Springer, Heidelberg
(2000)

5. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou,
C., Raghavan, P., Schöning, U.: A deterministic (2 − 2

k+1
)n algorithm for k-SAT

based on local search. Theoretical Computer Science 289(1), 69–83 (2002)
6. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley,

Chichester (1968)
7. Hartmann, A.K., Weigt, M.: Phase Transitions in Combinatorial Optimization

Problems. Wiley-VHC, Chichester (2005)
8. Hoos, H.: Stochastic Local Search - Methods, Models, Applications. PhD disserta-

tion, Universität Darmstadt (1998)
9. Hoos, H., Stützle, T.: Stochastic Local Search - Foundations and Applications.

Morgan Kaufmann, San Francisco (2004)
10. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer,

Heidelberg (2007)
11. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings

of the 32nd Ann. IEEE Symp. on Foundations of Computer Science, pp. 163–169.
IEEE Computer Society Press, Los Alamitos (1991)

Principles of Stochastic Local Search 187

12. Perkus, A., Istrate, G., Moore, C. (eds.): Computational Complexity and Statistical
Physics. Oxford University Press, Oxford (2006)

13. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer, Heidelberg
(2006)

14. Schöning, U.: On The Complexity Of Constraint Satisfaction Problems. Ulmer
Informatik-Berichte, Nr. 99-03. Universität Ulm, Fakultät für Informatik (1999)

15. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proceedings 40th IEEE Symposium on Foundations of Computer Science,
pp. 410–414 (1999)

16. Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica 32(4), 615–623 (2002)

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 188–198, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Spatial and Temporal Resource Allocation for
Adaptive Parallel Genetic Algorithm

K.Y. Szeto

Department of Physics
Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, SAR, China
{phszeto@ust.hk}

Abstract. Adaptive parameter control in evolutionary computation is achieved
by a method of computational resource allocation, both spatially and tempo-
rally. Spatially it is achieved for the parallel genetic algorithm by the partition-
ing of the search space into many subspaces. Search for solution is performed in
each subspace by a genetic algorithm which domain of chromosomes is re-
stricted inside that particular subspace. This spatial allocation of computational
resource takes the advantage of exhaustive search which avoids duplicate effort,
and combine it with the parallel nature of the search for solution in disjoint sub-
spaces by genetic algorithm. In each subspace, temporal resource allocation is
also made for different competing evolutionary algorithms, so that more CPU
time is allocated to those algorithms which showed better performance in the
past. This general idea is implemented in a new adaptive genetic algorithm us-
ing the formalism of mutation matrix, where the need for setting a survival
probability is removed. The temporal resource allocation is introduced and im-
plemented in a single computer using the quasi-parallel time sharing algorithm
for the solution of the zero/one knapsack problem. The mutation matrix ()M t is
constructed using the locus statistics and the fitness distribution in a population

()A t with N rows and L columns, where N is the size of the population and L is
the length of the encoded chromosomes. The mutation matrix is parameter free
and adaptive as it is time dependent and captures the accumulated information
in the past generation. Two competing strategies of evolution, mutation by row
(chromosome), and mutation by column (locus) are used for the competition of
CPU time. Time sharing experiment on these two strategies is performed on a
single computer in solving the knapsack problem. Based on the investment
frontier of time allocation, the optimal configuration in solving the knapsack
problem is found.

1 Introduction

Successful applications of genetic algorithm using the Darwinian principle of survival
of the fittest have been implemented in many areas [1,2], such as in solving the
crypto-arithmetic problem [3], time series forecasting [4], traveling salesman problem
[5], function optimization [6], and adaptive agents in stock markets [7,8]. A drawback
for the practitioners of genetic algorithm is the need for expertise in the specific

 Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm 189

application, as its efficiency depends very much on the parameters chosen in the
evolutionary process. An example of this drawback can be found in the ad-hoc man-
ner in choosing the selection mechanism, where different percentages of the popula-
tion for survival for different problems are generally required. Since the parameters
used in a specific application will usually not be optimal in a different application, the
traditional usage of genetic algorithm is more like an artisan approach. To tackle this
shortcoming, we attempt an adaptive approach where the number of parameters re-
quiring input from experts is reduced to a minimum. The basic aim is to make use of
past data collected in the evolutionary process of genetic algorithm to tune the pa-
rameters such as the survival probability of a chromosome. In this paper we provide a
general framework for adaptive parameter control for parallel genetic algorithm, both
spatially and temporally.

Temporally we can collect the statistics of the chromosomes in past generations to
decide the probability of mutation of each locus [9]. A general formalism using
a mutation matrix has been introduced with generalization to adaptive crossover
mechanism reported in a recent publication [10,11], which was reviewed briefly in
Section 2. Here we emphasize not only the adaptive parameter control in a particular
algorithm of evolutionary computation, but also the competition among several adap-
tive algorithms for computational time, assuming that there is a single CPU available.
This competition of CPU time then addresses the problem of adaptive temporal allo-
cation of resource to individual algorithm by a quasi-parallel process, which is sto-
chastic in nature [12]. To illustrate this problem in layman’s terms, let’s consider two
students, Alice and Bob, working independently on a difficult problem in cryptogra-
phy. The Professor only provides one computer for them. Without knowing who is the
better student, the professor gives Alice and Bob equal time sharing for the use of the
computer. However, after some time, Alice shows more promising results. Thus, it is
wise for the professor to give her more time to use the computer. A more sophisti-
cated professor will then measure the risk of giving all time to Alice, and adjust the
probability of computer usage at a given time by Alice accordingly. The problem of
temporal allocation of computer time to Alice and Bob therefore is a problem of port-
folio management, when the probability distribution functions of finding a solution by
Alice and by Bob should be used in an optimal way. An excellent method in portfolio
management has been provided by Markowitz [13] to locate the optimal parameters
in running the bottleneck program in a single computer that satisfies the criteria of
both high speed and high confidence. These ideas in laymen terms have been imple-
mented technically by Hogg and Huberman and collaborators [14] and Szeto and
Jiang [12]. The formalism is basically one of quasi-parallel genetic algorithm, which
is aimed at combining existing algorithms into new ones that are unequivocally pref-
erable to any of the component algorithms using the notion of risk in economics [13].
Here we assume that only one computer is available and the sharing of resource is
realized only in the time domain. The concept of optimal usage is defined economi-
cally by the “investment frontier”, characterized by low risk and high speed to solu-
tion. We will illustrate this idea in Section 3 where we combine the work on mutation
only genetic algorithm and time sharing in the framework of quasi-parallel genetic
algorithm. We test this approach on the 0/1 knapsack problem with satisfactory re-
sults, locating the investment frontier for the knapsack problem.

190 K.Y. Szeto

Spatially, we consider a simple partitioning of the solution space into disjoint sub-
spaces, so that we can perform parallel search in each subspace with adaptive genetic
algorithm with temporal parameter control. Our idea is to combine the advantage of
exhaustive search, which does not duplicate effort in search, with parallel genetic
algorithm. There will be communication between populations in different subspaces,
but there is no exchange of chromosomes and all evolutionary processes are restricted
to a given subspace. In this way, the dimensionality of the solution space is reduced.
However, this is the trivial advantage of spatial partition. The real advantage comes
from the allocation of computational resource to those populations which in the past
show more promise in finding the solution. In layman’s term, let’s consider the search
for a lost key in the beach. One first partitions the beach area into giant grids, and
perform parallel intelligent search in a given grid with the help of friends. By looking
for characteristic traces of the lost key, one naturally should spend more time in
searching in a grid where there are more traces. In Section 4, we put this simple idea
in more technical terms and suggest a way for performance evaluation for the search
process in individual subspace.

2 Mutation Matrix

In traditional simple genetic algorithm, the mutation/crossover operators are proc-
essed on the chromosome indiscriminately over the loci without making use of the
loci statistics, which has been demonstrated to provide useful information on mutation
operator [9]. In our mutation matrix formalism, the traditional genetic algorithm can
be treated as a special case. Let’s consider a population of N chromosomes, each of
length L and binary encoded. We describe the population by a NxL matrix, with entry

(), 1,..., ; 1,...,ijA t i N j L= = denoting the value of the jth locus of the ith chromosome.

The convention is to order the rows of A by the fitness of the chromosomes,
() ()i kf t f t for i k≤ ≥ . Traditionally we divide the population of N chromosomes

into three groups: (1) Survivors who are the fit ones. They form the first 1N rows of

the population matrix A(t+1). Here 1 1N c N= with the survival selection ratio

10 1.c< < (2) The number of children is 2 2N c N= and is generated from the fit

chromosomes by genetic operators such as mutation. Here 2 10 1c c< < − is the sec-

ond parameter of the model. We replace the next 2N rows in the population matrix

A(t+1). (3) the remaining 3 1 2N N N N= − − rows are the randomly generated chro-

mosomes to ensure the diversity of the population so that the genetic algorithm con-
tinuously explores the solution space.

In our formalism, we introduce a mutation matrix with elements
() () (), 1,..., ; 1,...,ij i jM t a t b t i N j L≡ = = where 0 (), () 1i ja t b t≤ ≤ are called the row

mutation probability and column mutation probability respectively. Traditional genetic
algorithm with mutation as the only genetic operator corresponds to a time independent
mutation matrix with elements () 0ijM t ≡ for

11,...,i N= , () (0,1)ijM t m≡ ∈ for

 Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm 191

1 21,..., ,i N N= + and finally we have () 1ijM t ≡ for 2 1,...,i N N= + . Here m is the

time independent mutation rate. We see that traditional genetic algorithm with muta-

tion as the only genetic operator requires at least three parameters: 1 2, , and N N m .

We first consider the case of mutation on a fit chromosome. We expect to
mutate only a few loci so that it keeps most of the information unchanged. This corre-
sponds to ``exploitation'' of the features of fit chromosomes. On the other hand, when
an unfit chromosome undergoes mutation, it should change many of its loci so that it
can explore more regions of the solution space. This corresponds ``exploration''.
Therefore, we require that ()ijM t should be a monotonic increasing function of the

row index i since we order the population in descending order of fitness. There are
many ways to introduce the row mutation probability. One simple solution is to use

() (1) /(1)ia t i N= − − . Next, we must decide on the choice of loci for mutation once

we have selected a chromosome to undergo mutation. This is accomplished by com-
puting the locus mutation probability of changing to X (X=0 or 1) at locus j as

jXp by

1 1

(1) ()
N N

k j
k m

jX N k X mp δ
= =

= + −∑ ∑ (1)

Here k is the rank of the chromosome in the population. () 1kj Xδ = if the j-th locus

of the k-th chromosome assume the value X, and zero otherwise. The factor in the

denominator is for normalization. Note that jXp contains information of both locus

and row and the locus statistics is biased so that heavier weight for chromosomes with
high fitness is assumed. This is in general better than the original method of Ma and

Szeto[9] where there is no bias on the row. After defining jXp , we define the column

mutation rate as

 ()0 1 '
' 1

1 | 0 .5 | | 0 .5 |
L

j j j
j

j p p bb
=

= − − − − ∑ (2)

For example, if 0 and 1 are randomly distributed, then 0 1 0.5j jp p= = . We have no

useful information about the locus, so we should mutate this locus, and 1jb = . When

there is definitive information, such as when 0 11 0 or 1j jp p= − = , we should not

mutate this column and 0jb = .

Once the mutation matrix M is obtained, we are ready to discuss the strategy of us-
ing M to evolve A. There are two ways to do Mutation Only Genetic Algorithm. We
can first decide which row (chromosome) to mutate, then which column (locus) to
mutate, we call this particular method the Mutation Only Genetic Algorithm by Row
or abbreviated as MOGAR. Alternatively, we can first select the column and then the
row to mutate, and we call this the Mutation Only Genetic Algorithm by Column or
abbreviated as MOGAC.

192 K.Y. Szeto

For MOGAR, we go through the population matrix A(t) by row first. The first step

is to order the set of locus mutation probability ()jb t in descending order. This or-

dered set will be used for the determining of the set of column position (locus) in the
mutation process. Now, for a given row i, we generate a random number x. If

()ix a t< , then we perform mutation on this row, otherwise we proceed to the next

row and (1) (), 1,...,ij ijA t A t j L+ = = . If row i is to be mutated, we determine the

set ()iR t of loci in row i to be changed by choosing the loci with ()jb t in descending

order, till we obtain () ()i iK t a t L= ∗ members. Once the set ()iR t has been con-

structed, mutation will be performed on these columns of the i-th row of the A(t)
matrix to obtain the matrix elements (1), 1,...,ijA t j L+ = . We then go through all N

rows, so that in one generation, we need to sort a list of L probabilities ()jb t and

generate N random numbers for the rows. After we obtained A(t+1), we need to com-

pute the (1) (1)ij i jM t a b t+ = + and proceed to the next generation.

For MOGAC, the operation is similar to MOGAR mathematically except now we
rotate the matrix A by 90 degrees. Now, for a given column j we generate a random

number y. If ()jy b t< , then we mutate this column, otherwise we proceed to the

next column and (1) (), 1,...,ij ijA t A t i N+ = = . If column j is to be mutated, we

determine the set ()jS t of chromosomes in column j to be changed by choosing the

rows with the ()ia t in descending order, till we obtain () ()j jW t b t N= ∗ members.

Since our matrix A is assumed to be row ordered by fitness, we simply need to choose

the , 1,..., 1jN N N W− − + rows to have the j-th column in these row mutated to

obtain the matrix elements (1), 1,...,ijA t i N+ = . We then go through all L columns,

so that in one generation, we need to sort a list of N fitness values and generate
L random numbers for the columns.

3 Temporal Allocation of Resource

Our mutation matrix is adaptive and time dependent. The two strategies of using the
mutation matrix formalism, MOGAR and MOGAC, present a good example for tem-
poral allocation of computational resource. The framework for proper mixing of com-
puting algorithms is the quasi-parallel algorithm of Szeto and Jiang [12]. Here we first
summarize this algorithm. A simple version of our quasi-parallel genetic algorithm
(QPGA (, , ,)M SubGA T= Γ) consists of M independent sub-algorithms SubGA. The

time sharing of the computing resource is described by the resource allocation
vector Γ . If the total computing resource is R, shared by M sub-algorithms
Gi, i=1,2,…,M, with resource Ri assigned to Gi in unit time, then we introduce

 Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm 193

i iR Rτ = , 0 1iτ≤ ≤ for any i=1,2,…,M, and
1

1
M

ii
τ

=
=∑ , and the allocation of re-

source for sub-algorithms is defined by the resource allocation vector,

1 2(, ,)Mτ τ τ ′Γ = L . In our case, we have M=2 and our SubGA are MOGAR and

MOGAC. For resource allocation, we only have one parameter 0 1γ< < which is the

fraction of time the computer is using MOGAR, and the remaining fraction of time
(1 γ−) we use MOGAC. The termination criterion T is used to determine whether a

QPGA should stop running. Thus, we have a mixing of MOGAR with MOGAC in the
framework of quasi-parallel genetic algorithm with a mixing parameter γ . The paral-

lel genetic algorithm described above can be implemented in a serial computer. For a
particular generation t, we will generate a random number z. If z <γ , then we per-

form MOGAR, otherwise we perform MOGAC to generate the population A(t+1).
We now apply this quasi-parallel mutation only genetic algorithm to solve the 0/1
knapsack problem and try to obtain the investment frontier that give the mixing pa-
rameter γ that yields the fastest speed in solving the problem while also running with

most certainty (minimum risk) of getting the solution.

4 Spatial Allocation of Resource

Let’s begin with the simple case of binary encoding of the solution of a typical search
problem for the maximum of a function. The quality of the solution is defined by the

length L of the chromosomes. In exhaustive search, we simply try all 2L chromo-
somes in the solution space. If we partition the solution space into n subspaces,

{ }2 , (0)kn k L= < < , we can perform intelligent search in each of these n sub-

spaces, so that there is an effective reduction in the dimension of search space from

2L to 2L k− . For example, we use n=4 and use the first two loci of the chromosomes:

() (){ }1... , (0,1); 1,..., ; , (0,1)cd k L iS cdx x x i k L c d+≡ ∈ = + ∈ . The four sets of

chromosomes ()00 01 10 11, , ,S S S S describe typical solution restricted to the four sub-

spaces labeled by the first two loci. These subspaces are mutually exclusive so that
search in each subspace can be performed independently without duplication of effort
that often appears had the search not been restricted to individual subspace. Opera-
tionally, one can search sequentially or randomly in these subspaces. For illustrative

purpose, we assume sequentially search in the order of ()00 01 10 11, , ,S S S S by as-

signing four populations ()00 01 10 11, , ,A A A A correspondingly for each of the sub-

space. In order to implement adaptive spatial allocation of resource, we evolve each

population ()cdA for some generations ()cdG . A time sharing process for the evolu-

tion of many populations with one CPU can then be implemented on these four popu-
lations for the four subspaces. As in Section 3, we can do the allocation of CPU by the
following steps:

194 K.Y. Szeto

1. Divide searching into segments with equal length τ which denotes the total num-
ber of generations the program will evolve in all subspaces in the given segment.

2. Initialize each population with ()00 01 10 11(0) (0) (0) (0) /G G G G nτ= = = = .

3. The population which represents a subspace with a higher probability to contain
the global optimal solution will gain more computational time. The adaptive
change of the sharing of resource can be done with a measure of the population

fitness ()00 01 10 11, , ,F F F F of ()00 01 10 11, , ,A A A A .

In this example, we need to define the population fitness, as well as a partition of the
segment into n pieces for the n population to evolve in the next segment. Given a
measure of population fitness, we can partition the segment by the monotonic increas-

ing function (())cd cdP F of population fitness so that the division of the segment time

is given by

00 00 01 01 10 10 11 11

(())
(1)

(()) (()) (()) (())
cd cd

cd

P F t
G t

P F t P F t P F t P F t
τ+ =

+ + +
 (3)

Here t is the label for the segment and initially, 1/cdP n= .

There are two remaining problems to be solved before one can use spatial resource

allocation. The first one concerns the function ()cd cdP F . If we consider the evolving

populations ()00 01 10 11, , ,A A A A representing states of a large system in different

configuration in the space of solutions, then they may be considered as the state of the
system with specific “energy”, represented by their fitness values

()00 01 10 11, , ,F F F F . The similarity of an evolving physical system with changing

energy landscape leads naturally to the Boltzmann form of FP e∝ . The partitioning
of the segment τ accordingly follows the partition of unity of the Boltzmann factor
in the canonical ensemble in statistical mechanics. Although this choice of the P is a
heuristic one, it has the advantage of the interpretation of probability. However, even
without appealing to physics, this choice for P in practice has the advantage of ampli-
fying the effect of difference in population fitness, which is usually not large for prac-
tical size of segment τ .

The second problem concerns the choice of F. Here we define F as the fitness of
the population A in a given subspace S. For each member of the population A, which
is a chromosome c, one can associate with c a fitness f. This fitness f is the usual
definition of fitness in single population genetic algorithm. For example, if the prob-
lem is to find the maximum of a given function H(x), then a trial solution x% can be
represented as a binary string, which corresponds to the chromosome c in genetic
algorithm. The fitness f of the chromosome can simply be ()f H x= % . The popula-

tion fitness for a collection of N chromosomes can then be the average fitness of these
N trial solutions. However, a better choice for population fitness is the maximum

 Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm 195

fitness of the N solutions: max{ (); 1,..., }i iF f H x i N= = = . This is a better choice

for population fitness because our objective is to find the maximum of the H(x). In
terms of performance evaluation, we can pose the following question: are we spending
the effort to find the solution in the right place? By right place, we mean the subspace
that actually contains the global maximum of H(x). Supposing that we partition the

solution space into four subspaces ()00 01 10 11, , ,S S S S and that the global maximum

of H(x) is in cdS . If cdG G> , where
' '

' '

1
c d

c d

G G
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ is the average genera-

tion, then we can say that we are correctly devoting our search effort in the right
place. Over a large number of numerical experiments that run this search for the

global maximum of H(x), the probability Q that cdG G> can be computed. This

probability Q represents the probability of correct spatial resource allocation in the
search for maximum H(x) and it can be used as a measure of performance of the algo-
rithm for the given choice of P and F.

5 The Zero/One Knapsack Problem

The model problem to test our ideas on resource allocation for adaptive genetic algo-
rithm is the Knapsack problem. We define the 0/1 knapsack problem [15] as follow.

Given L items, each with profit iP , weight iw and the total capacity limit c, we need

to select a subset of L items to maximize the total profit, but its total weight does not
exceed the capacity limit. Mathematically, we want to find the set

{0,1}, 1,...,ix i L∈ = to

1 1

Maximize subjected to constraint
L L

j j j j
j j

P x c w x
= =

≥∑ ∑ (4)

We consider a particular knapsack problem with size L=150 items,

c=4000, []0,1000jP ∈ , and []0,100jw ∈ chosen randomly but afterwards fixed.

We have found evidence that mixing MOGAR with MOGAC in a time-sharing man-
ner produces superior results compared to dynamic programming in numerical ex-
periment for the 0/1 knapsack problem. More importantly is the finding of the optimal
time sharing parameter by locating the investment frontier of our mutation only
genetic algorithm.

Our choice of the mutation matrix is the simple form of () (1)/(1)ia t i N= − − . Here

N (=100) is the size of the population in all genetic algorithms. For a given generation
time t, we generate a random number z. If z < γ , then we perform MOGAR, other-

wise we perform MOGAC to generate the population A(t+1). Next we address the
stopping criterion. We use exhaustive search to locate the true optimal solution of the
knapsack problem. Then, we run our mixed MOGA in temporal resource allocation as

196 K.Y. Szeto

Fig. 1. Illustration of the investment frontier in temporal allocation of resource for using
MOGAR and MOGAC as competing algorithms in the search for solution of the 0/1 Knapsack
problem. Different point on the curve corresponds to different time sharing parameter γ . The
optimal allocation is defined by the tip of the curve, which corresponds to the time sharing
factor at 0.22 0.02cγ = ± .

defined in section 3 for 1000 times to collect statistical data. For each run, we define
the stopping time to be the generation number when we obtain the optimal solution, or
1500, whichever is smaller. The choice of 1500 as the upper bound is based on our
numerical experience since for a wide range ofγ , all the runs are able to find the

optimal solution within 1500 generations. Only for those extreme cases where γ is

near 1 or 0, meaning that we use MOGAR alone or MOGAC alone, a few runs fail to
find the optimal solution within 1500 generations. This is expected since we know
row mutation only GA has low speed of convergence while column mutation only GA
has early convergence problem. These extreme cases turn out to be irrelevant in our
search of the investment frontier. When we plot the mean first passage time to solu-
tion and its standard deviation of 1000 runs as a function of the time sharing parame-
ter γ , we found the investment frontier shown in Fig.1. The curve is parameterized

by γ . We see that there is a point on the curve which is closest to the origin. This

point is unique in this experiment, corresponding to a value of 0.22 0.02cγ = ± . The

interpretation of this time sharing parameter is that our temporal allocation produces
the fastest and most reliable (least risky) hybrid algorithm in finding the optimal

 Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm 197

solution of the 0/1 knapsack problem. In another word, the investment frontier of this

problem consists of a single critical point at cγ .

For spatial resource allocation, we also use the knapsack problem as benchmark
test. We evaluate our algorithm for L=15,20,25, and we use τ =80 and divide our
solution space into four subspaces. The size of each of the four populations is 25 and
simple MOGAR is used for the evolution in each subspace. The probability Q of
correct spatial resource allocation in the search for solution of the knapsack problem
of size L are (0.687,0.949,0.972) for L=15,20,25 respectively.

6 Discussion

The simple ideas illustrated with a layman’s example in the introduction is formalized
and tested with the 0/1 knapsack problem in this paper. The general idea of spatial
and temporal resource allocation in adaptive parallel genetic algorithm can be ex-
tended to include crossover [11] and more complex choices of competing algorithms.
One of the possible extensions for spatial resource allocation is to do an intelligent
partition of the solution space initially, so as to speed up the search. In this paper we
only use the first two loci for the partitioning of the solution space into four sub-
spaces. In general, we should ask what are the best choices for these two loci and
when should we perform the partitioning. Should we do it repetitively, so that the
search becomes some kind of iterative partitioning with a fast shooting at the location
of global optimum? For temporal allocation, we can attempt a more sophisticated
analysis of the investment frontier when there are more than two competing algo-
rithms. In our present example, the frontier consists of a single critical point, repre-
senting the critical value of time sharing of mixing MOGAR and MOGAC to be 0.22,
meaning that statistically we should use 22% of the computational resource on muta-
tion by row, and 78% on mutation by column when solving the knapsack problem. In
general, the frontier is a critical surface which topology should be of interest for fur-
ther theoretical analysis.

Acknowledgement

K.Y. Szeto acknowledged that this work is supported by RGC grant no. HKUST
603203 and DAG04.05/SC23 Numerical help from Zhao S.Y. is acknowledged.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975)

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley, Reading, MA (1989)

3. Li, S.P., Szeto, K.Y.: Crytoarithmetic problem using parallel Genetic Algorithms,
Mendl’99, Brno, Czech. (1999)

198 K.Y. Szeto

4. Szeto, K.Y., Cheung, K.H.: Multiple time series prediction using genetic algorithms opti-
mizer. In: IDEAL’98. Proceedings of the International Symposium on Intelligent Data En-
gineering and Learning, Hong Kong, pp. 127–133 (1998)

5. Jiang, R., Szeto, K.Y., Luo, Y.P., Hu, D.C.: Distributed parallel genetic algorithm with
path splitting scheme for the large traveling salesman problems. In: Shi, Z., Faltings, B.,
Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing, 16th
World Computer Congress 2000, Beijing, August 21-25, 2000, pp. 478–485. Publishing
House of Electronic Industry (2000)

6. Szeto, K.Y., Cheung, K.H., Li, S.P.: Effects of dimensionality on parallel genetic algo-
rithms. In: Proceedings of the 4th International Conference on Information System, Analy-
sis and Synthesis, Orlando, Florida, USA, vol. 2, pp. 322–325 (1998)

7. Szeto, K.Y., Fong, L.Y.: How adaptive agents in stock market perform in the presence of
random news: a genetic algorithm approach. In: Leung, K.-S., Chan, L., Meng, H. (eds.)
IDEAL 2000. LNCS, vol. 1983, pp. 505–510. Springer, Heidelberg (2000)

8. Fong, A.L.Y., Szeto, K.Y.: Rule Extraction in Short Memory Time Series using Genetic
Algorithms. European Physical Journal B 20, 569–572 (2001)

9. Ma, C.W., Szeto, K.Y.: Locus Oriented Adaptive Genetic Algorithm: Application to the
Zero/One Knapsack Problem. In: Proceeding of The 5th International Conference on Re-
cent Advances in Soft Computing, RASC2004, Nottingham, UK, pp. 410–415 (2004)

10. Szeto, K.Y., Zhang, J.: In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.): LSSC 2005.
LNCS, vol. 3743, pp. 189–196. Springer, Heidelberg (2006)

11. Law, N.L., Szeto, K.Y.: Adaptive Genetic Algorithm with Mutation and Crossover Matri-
ces. In: Proceeding of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-07) January 6 - 12, 2007 (Volume II) Theme: Al and Its Benefits to Society, Pub-
lished by International Joint Conferences on Artificial Intelligence, IJCAI-07. Hyderabad,
India, pp. 2330–2333 (2007)

12. Szeto, K.Y., Rui, J.: A quasi-parallel realization of the Investment Frontier in Computer
Resource Allocation Using Simple Genetic Algorithm on a Single Computer. In: Fager-
holm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002.
LNCS, vol. 2367, pp. 116–126. Springer, Heidelberg (2002)

13. Markowitz, H.: J. of Finance 7, 77 (1952)
14. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational

problems. Science 275(3), 51–54 (1997)
15. Gordon, V., Bohm, A., Whitley, D.: A Note on the Performance of Genetic Algorithms on

Zero-One Knapsack Problems. In: Proceedings of the 9th Symposium on Applied Com-
puting (SAC’94), Genetic Algorithms and Combinatorial Optimization, Phoenix, Az, pp.
194–195 (1994)

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 199–213, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Gravitational Topological Quantum Computation

Mario Vélez and Juan Ospina

Logic and Computation Group
School of Sciences and Humanities

EAFIT University
Medellin, Colombia

{mvelez,jospina}@eafit.edu.co

Abstract. A new model in topological quantum computing, named
Gravitational Topological Quantum Computing (GTQC), is introduced as an
alternative respect to the Anyonic Topological Quantum Computing and DNA
Computing. In the new model the quantum computer is the quantum space-time
itself and the corresponding quantum algorithms refer to the computation of
topological invariants for knots, links and tangles. Some applications of GTQC
in quantum complexity theory and computability theory are discussed,
particularly it is conjectured that the Khovanov polynomial for knots and links
is more hard than #P-hard; and that the homeomorphism problem, which is non-
computable, maybe can be computed after all via a hyper-computer based on
GTQC.

Keywords: Gravitational computer, Topological quantum computing, link
invariants, entanglement, complexity, computability.

1 Introduction

There are many practical problems whose solutions can not be determined using a
classical computer [1]. Actually is believed that such hard problems can be solved
using quantum computers [2]. More over was recently proposed that these hard
problems could be solved using topological quantum computers, specifically anyonic
topological quantum computers [3]. In this model, the quantum computer is a certain
condensed matter system called anyon system and the computations are realized using
braiding of anyon lines.

In this work we intend to describe a new model of topological quantum computer,
which is an alternative respect to the anyonic model. The new model is named
gravitational topological quantum computer and in this case the quantum computer is
the quantum space-time itself. It is expected that the GTQC will be able to solve hard
problems and will be possible to think about gravitational topological quantum
hyper-computers which are able to solve incomputable problems.

Very recently the topological quantum computation has been oriented to the
computation of invariant polynomials for knots and links, such as Jones, HOMFLY,
Kauffman polynomials [4]. The physical referent that is keeping on mind in this
application of TQC is certain kinds of anyon structures which are realized as

200 M. Vélez and J. Ospina

condensed matter systems. More over any quantum computation can be reduced to an
instance of computation of Jones polynomial for determined knot or link [5,3].

From the other side, it is known that link invariants also appear in quantum gravity
as the amplitudes for certain gravitational process . Specifically the Jones, HOMFLY
and Kauffman polynomials can be obtained as the vacuum states of the quantum
gravitational field [6]. In other words the quantum gravity is able to compute Jones
polynomials.

For hence from the perspective of the TQC it is possible to think in other
computational model which can be named Gravitational Topological Quantum
Computation (GTQC). In GTQC the physical quantum computer is not more an
anyon system. In GTQC the quantum computer is the space-time itself; the computer
is the quantum gravitational field.

In this work we develop the idea of GTQC and we derive a gravitational quantum
algorithm for the approximated calculation of the Jones polynomials, Kauffman
bracket and Khovanov homology [7]. Also we discuss the possible applications of
GTQC to the quantum complexity theory and to the computability theory.

The more famous topological invariants for knots and links are the following: the
Alexander polynomials (1923), the Alexander-Conway polynomials (1960), the Jones
polynomials(1984), the HOMFLY polynomials (1986), the bracket polynomials
(1987), the Kauffman polynomials (1990), the Vassiliev invariants (1988), the
Konsetvich invariants (1990) and the Khovanov cohomology (2000). At general the
effective calculations of all these topological invariants are very hard and complex as
for to be realized using a classical or traditional computer. Recently it was proposed
that these calculations could be efficiently realized using certain kinds of non-
classical computers such as the quantum computers and the DNA computers. For
hence the aim of the present paper is to show that the gravitational topological
quantum computers in a very natural way are able to compute such topological
invariants.

2 AJL Algorithm in Anyonic TQC

In [8] Witten was able to obtain the Jones polynomial within the context of the
topological quantum field theory of the Chern-Simons kind. Nearly immediately other
polynomials were obtained such as the HOMFLY and the Kauffman polynomials [9].
The main idea consists in that the observables (vacuum expectation values) of the
TQFT’s are by itself topological invariants for knots, links, tangles and three-
manifolds.

More in details, given an oriented knot or link and an certain representation of the
gauge group, it is possible to build a Wilson Loop operator (colored Wilson Loop)
for which the vacuum value is precisely the Jones, HOMFLY and Kauffman
polynomials.

Now in [10], Freedman, Kitaev, Larsen and Wang give us a new model
of quantum computation, which is named topological quantum computation
and given that this model is presented as realized using anyons systems, the new
model is renamed as anyonic topological quantum computation [11]. Two important
consequences from the model of Freedman et al are that many TQFT’s can be

 Gravitational Topological Quantum Computation 201

simulated using a standard quantum computer and that reciprocally a quantum
computer can be implemented as an anyonic topological quantum computer. The
model of Freedman et al is based on directly over TQFT and it involves complicated
developments in algebraic topology which are very difficult to understand from the
perspective of the computer science.

Fortunately very recently a thanks to the work of Kauffman and Lomonaco [12], a
new direction in anyonic topological quantum computation was formulated. This line
Kauffman-Lomonaco is based on geometric topology and representation theory and it
is more accessible for the computer scientists.

Justly inside of this line of geometric topology and representation theory, and
again very recently, a topological quantum algorithm for the approximated
computation of the Jones polynomial was discovered by Aharanov, Jones and Landau
[4]. This algorithm was its origin in the Freedman-Kitaev-Larsen-Wang model inside
of which certain algorithm for the Jones polynomial was in latent state [3,10]. The
algorithm AJL was generalized in [5] for the case of HOMFLY polynomial and its
structure is discussed in a pedagogical way in [13].

Here we describe the basic ingredients of the AJL algorithm which are: 1) The
definition of the Kauffman bracket, 2) the definition of the Jones polynomial in terms
of the Kauffman bracket, 3) the representation of the Kauffman bracket as the Markov
trace of an unitary representation of the braid algebra via the Temperley-Lieb alge-
bra ; 4) the quantum compilation of the unitary braid representation; and, 5) the
Hadamard test.

The Kauffman Bracket for the link L is defined as the following state summation
[9,4,5]

<L>HA,B,JL=‚
α

<L ,α>HA,BL J−1+kHαL

(1)

Where the summation is over every state α which is a representation of every possible
smoothing of the link L; A, B and J are the skein variables; k(α) is the number of
loops in the state α; and < L,α>(A,B) is the contribution of the state α in terms of the
skein variables A and B, being the contribution of the loops of the state α given by
J(k(α) - 1).

The computation of the Kauffman Bracket for a given link L with a high number of
crossings and with a very high number of possible states of smoothing, is a hard
problem, concretely is a #P-hard problem and for then it can not be solved
algorithmically in a polynomial time [4,5].

For the case of very little knots it is possible to use computer algebra software with
the aim to compute the corresponding Kauffman brackets. Specifically it is possible to
use a program in Mathematica, which was constructed by the mathematician Dror Bar
Natan [14]. The input for this program is a representation of the link as a product of
the symbols for every crossing, then every crossing is smoothed using the Kauffman
skein relation and the product of symbols is expanded and simplified according with
the relations among the skein parameters A, B and J.

The Kauffman bracket given by (1) can be normalized to [9,4,5]

KHL,A,B,JL=H−A3L−wHLL<L>HA,B,JL

 (2)

Where w(L) is the writhe of L it is to say the sum of the crossing signs of L.

202 M. Vélez and J. Ospina

As is well known, the bracket polynomial (1) is invariant under Reidemeister
moves II and III but it is not invariant under Reidemeister move I. But the normalized
Kauffman bracket (2) is invariant under all the Reidemeister moves and when certain
change of variable is made, the Jones polynomial is obtained, namely

VHL,tL= Lim

Azt−
1
4

KHL,A, 1
A
, −

1

A2
− A2 L

(3)

where t is the variable of the Jones polynomial. It is worthwhile to note here that the
Jones polynomial was discovered by V. Jones [15] using a different method which
does not involve the Kauffman bracket.

As we said in the introduction the anyonic topological quantum computation was
formulated originally inside the domain of the TQFT’s of the algebraic topology. Also
we said that Kauffman and Lomonaco were able to construct the ATQC inside the
domain of the geometric topology.

The geometric topology is concerned with the study of the geometrical figures
which exhibit topological entanglement [16], such as braids, knots, links, tangles and
so on. The main idea in geometric topology is to discover algebraic structures which
are naturally associated with the topological entanglement. There many of these
algebras, some examples are the braid algebra, the Temperley-Algebra, the Iwahori-
Hecke algebra, the Birman-Wenlz-Murakami algebra, and their generalizations [17].
To understand the AJL algorithm is necessary to introduce the braid and TL algebras.

The Artin braid [18] on n strands, denoted Bn is generated by elementary braid
operators denoted {σ1 , σ2, ,σn-1}with the relations

σiσj=σjσi for 1

(4)

 σiσi+1σi= σi+1σi σi+1 for = 1 · · 2 � (5)

A generic braid is a word in the operators σ’s.
The equation (5) is the Yang-Baxter equation and its solutions are by themselves

very important for quantum computing [12]. The group Bn is an extension the
symmetric group Sn and as was discovered very recently, Bn has a very rich
representation theory including dense sets of unitary transformations [3,10,4,5] and
which again is the fundamental importance for the quantum computation in particular
and the quantum informatics in general.

Now intimately linked with the braid algebra, appears the algebra named
Temperley-Lieb [19], which is denoted TLn(J) and is generated by the operators {In,
U1, U2, · · · , Un−1} with the relations

 Ui
2= J Ui (6)

 UiUi+1 Ui = Ui (7)

 UiUj= Uj Ui: |i − j| > 1. (8)

The Temperley-Lieb algebra can be represented diagrammatically using certain
pictures which are named Kauffman diagrams [20]. It is worthwhile to note here that
both the braids and the Kauffman diagrams are particular cases of certain more
general structures of topological entanglement which are named tangles. All this

 Gravitational Topological Quantum Computation 203

means that both the braid algebra Bn and the Temperley-Lieb algebra TLn are
particular cases of a more general algebra which is named tangle algebra. From the
other side is very remarkable that the tangle algebra has a very important role in
quantum gravity [21] and this fact can be exploited in the sense of the theoretical
possibility of a gravitational topological quantum computation, as will be seen more
later. Finally it is necessary to have in mind that all knot or link can be obtained as the
closure of a given braid or tangle, being a closure the object that is obtained when the
extremes of the braid or tangle are identified [4,5].

The topic of the unitary representations of the braid algebra is crucial both for the
AJL algorithm in particular as for the anyonic topological quantum computation in
general [3,10,4,5,11,12].

There are many ways to obtain such unitary braid representations: 1) Unitary
solutions of the Yang-Baxter equations and Yang-Baxterization [12,22]; 2) Unitary
representations of the braid algebra on the Temperley-Lieb algebra [3,10,4,5,13]; and
3) The Kauffman’s Temperley-Lieb recoupling theory [11]. For the AJL algorithm
the more appropriate is the method 2) using the representations of Bn on TLn(J).

An unitary braid representation can be obtained via TL algebra as: [4,5,11,13]

 i AI BUi (9)

The equation (9) gives the representation for the generators of Bn . For the case of a
generic braid b described by certain word in Bn, the equation (9) implies that [11]

ΦHbL=AeHbLI+ΨHbL

 (10)

Where e(b) is sum of the exponents in the word that represents b and Ψ(b) is a sum of
products in the operators Ui.

Now we introduce certain trace for the representation (9) which is named a Markov
trace [4,5,13,11,12]. This trace is similar to usual trace for matrices but the difference
is that the Markov trace is defined for the algebras of geometric topology such as
Temperley-Lieb, Iwahori-Hecke and Birman-Wenzl-Murakami [17].

The crucial fact here is that the Kauffman bracket for the knot or link that results
from the closure of b (denoted C(b)), is justly the Markov trace for the representation
(10), formally

<CHbL>HA,B,JL=trHΨHbLL+AeHbLJd

 (11)

Where d is the dimension of the unitary braid representation (9). When Ψ(b) is solved
in (10) and the result is substituted in (11) we obtain that

<CHbL>HA,B,JL=trHΦHbLL+AeHbL H−d+JdL

 (12)

As it is observed in (12), the question to computing the Kauffman bracket for the
closure of the braid b is mathematically reduced to the problem of computing the
Markov trace of the unitary operator Φ(b) defined in TLn(J) [4,5,11,13].

As a particular case, the equation (12) implies that due to (2) and (3), the
computation of the Jones polynomial for C(b) is mathematically reduced to the
computation of the Markov trace for the unitary braid representation Φ(b).

The AJL algorithm consists in a method to compute tr(Φ(b)) using a standard
quantum computer. The AJL algorithm is realized in two steps, the first step is the

204 M. Vélez and J. Ospina

compilation process and the second step is execution [13]. The compilation phase
consists in translate to the quantum machine language (qbits , two-qbits quantum
gates and quantum circuits), the unitary braid representation Φ(b). The execution
phase is simply the application of the Hadamard test to the quantum circuit that
represents the unitary braid operator Φ(b), being the Hadamard test certain quantum
algorithm for determination of the diagonal elements of a unitary matrix. More details
for the AJL algorithm are given in [4,5,13,11]. In [5] Wocjan and Yard present a
generalization of the AJL algorithm, which is able to compute de HOMFLY
polynomial of a given link. The algorithm proposed by Wocjan and Yard is based on
directly over the Iwahori-Hecke algebra [5,17] with the corresponding unitary braid
representations and the appropriate Markov trace [5,17]. As a particular case the AJL
algorithm is obtained given that the IH algebra contains the TL algebra or in other
words the HOMFLY polynomial contains as a limit case the Jones polynomial.

Other kinds of algorithms for the computation of Jones polynomials are given
in [23].

From the physical point of view, the AJL algorithm may be realized using anyon
systems or more exotic systems in condensed matter physics [24].

3 Gravitational Topological Quantum Computation

In this section the idea of a GTQC is introduced. Intuitively a GTCQ is a model of
computation using the quantum gravitational field as a quantum computer.

Quantum gravity is an attempt to put together the quantum mechanics and the
general relativity according to a single consistent theory [25]. There are actually
various models of quantum gravity. From a side we have the string quantum gravity
(Schwarz); and from the other side we have the loop quantum gravity (Ahstekar,
Smolin, Rovelli, Griego, Gambini, Pullin, Baez, Kauffman) [26,25,6,21] and the spin
network quantum gravity (Penrose) From the perspective of the TQC the more
adequate models of quantum gravity are the loop formulation and the spin network
formulation. The reason is that the loop quantum gravity and the spin network
quantum gravity, entail naturally the invariant polynomials of knots, links and tangles;
and such polynomials are paradigmatic in the very recently developments of the TQC
such as the AJL algorithm which was presented previously.

In the loop quantum gravity and in the spin network quantum gravity, the space-
time is conceived as a very complex structure of. topological entanglement which is
able to produce quantum entanglement and for then, quantum computation.
Specifically the space-time is composed of braids, knots, links and tangles; and the
amplitudes for the quantum gravitational process are determined by the invariant
polynomials corresponding to these structures of topological entanglement. All this is
precisely the physical background for the construction of quantum algorithms for
gravitational quantum computers.

In quantum gravity a very special role is reserved for the structures of topological
entanglement such as braid, knots, links and tangles. These structures are assumed
constructed in the space-time in a such way that the results of measuring the quantum
observables for the quantized gravitation field are given in terms of the invariants
polynomials for knots, links and tangles [26,25,6,21]. It is possible to think about the

 Gravitational Topological Quantum Computation 205

quantum gravitational field as a quantum computer that is able to compute invariant
polynomials such as Jones, HOMFLY, Kauffman and their generalizations including
the Khovanov homology and the Khovanov-Rozansky homology.

To see how the link polynomials appear in the context of loop quantum gravity we
use the following equations.

There are two pictures in loop quantum gravity [25]. The first one is called the
Ahstekar connection representation and the second one is called the loop
representation. A functional Φ(A) in the connection representation, being A an
Ahstekar connection; and a functional Ψ(L) in the loop representation, being L a
link, are related by the loop transform whose kernel is the trace of the holonomy of
the Ahstekar connection, it is to say the following Wilson loop for the circulation of A
on L [25]

 ∏ ∫
∈

=
L

APTrALK
λ λ

))exp((],[, (13)

and the following integral relation

 ∫ Φ=Ψ)()(],[)(AdAALKL μ (14)

Where dμ(A) is a measure on the space of Ahstekar connections, that is assumed to
be invariant under diffeomorphisms.

Now, a particularly important physical state for quantum gravity is the Kodama
state which is defined in the connection representation in the following form [25]

)
8

3
exp()(∫

ΣΛ
=Φ CSY

G
NA

π
 (15)

where YCS is the Chern-Simons action and it is defined as

)
3

2
(

2

1
AAAdAATrYCS ∧∧+∧= (16)

The loop transform of the Kodama state (15) according with (14) and (13), gives
that

 ∫ ∫
ΣΛ

=Ψ)()
8

3
exp(],[)(AdY

G
NALKL CS μ

π
 (17)

It is well known that (17) is justly the Witten partition function for the Chern-
Simons theory with gauge group SU(2); and that the final result is Ψ(L) =
<L>(A,B,J), where <L>(A,B,J) is the Kauffman bracket defined by (1); it is to say
that the Kodama state is the loop representation is the Kauffman bracket being the
skein variable A certain function of Λ, where Λ is the cosmological constant [25]. All
these show how the link polynomial naturally arise as non-perturbative physical states
in loop quantum gravity.

In loop quantum gravity the relation between the Jones polynomial and the
Kauffman bracket given by (3), is rewritten in the form [6]

)()()(LVeLK Lw
Λ

Λ−
Λ = (18)

206 M. Vélez and J. Ospina

Also it is well known that the action of the Hamitonian on the Kodama state
(Kauffman bracket) is given by [6]

 0)(=ΛΛ LKH (19)

This indicates that the Kodama state is an eigenstate of the Hamiltonian HΛ
associated with the eigen-energy zero.
Other two important restrictions which are very important for that it follows , read [6]

 0)(20 =LVH (20)

 0)(30 =LVH (21)

where Vm(L) are the coefficients of the expansion of the Jones polynomial in terms of
the cosmological constant. As is observed in (20) and (21), the coefficients of the
Jones knot polynomial appear to be related to the solutions of the vacuum
Hamiltonian constraint [6,25].

As is well known the quantum computing is based on one of the fundamental
physical theories, namely the quantum theory. The other fundamental physical
theory, the general relativity until now only has some few applications in computer
science. In [27] an application of general relativity was given for the case of certain
hard problems which are solved by a classic computer (Turing machine) when the
computer is moved along of the geodesics of the curved space-time. In such
computational model the gravitational field is not used as a computer. From other side
in [28] the limitations of the quantum gravity on the quantum computers, were
discussed but again the gravitational field is not considered as a computer by itself.
More over in [29], the general relativity is used to compute justly non-computable
problems including problems of higher degree of Turing non-computability. The
strategy in such model of hypercomputation is to use a classical computer which is
orbiting certain kind of rotating black hole. Again in this model the gravitational field
is not used as a computer.

With all that is very interesting consider the possibility to have a computational
model for which the gravitational field is the computer. This possibility can be
explored both from the point of view of the general relativity as from the perspective
of quantum gravity or more concretely from the optics of the loop quantum gravity.
Here we introduce a computational model which is named gravitational topological
quantum computation and we expect that our model results relevant for computer
science both from the side of complexity theory as from the side of computability
theory.

As we said before the braid quantum computer of the anyonic topological quantum
computation, is realized using anyon systems of condensed matter physics. Now,
given the tangle is a general structure of topological entanglement it is possible to
think about the tangle quantum computer . This tangle computer may be realized
again on anyon systems but other possibility exists, namely the realization of the
tangle computer in quantum gravity, given that quantum gravity contains tangles and
Jones polynomials.

In this work we investigate only the gravitational topological tangle quantum
computer which is realized using quantum gravitational fields. In the same way that
the braid algebra is naturally associated with the anyonic systems, the tangle algebra

 Gravitational Topological Quantum Computation 207

is intimately associated with the quantum gravitational fields. In the anyonic TQC is
expected that be possible to have quantum chips with a very large number of
integrated quantum gates, simply with a certain braid whose strands are the universe
lines for anyons. Similarly is possible to expect that the GTQC be able to produce
such quantum chips, simply with a certain tangle which is the vacuum state of the
quantum gravitational field.

In quantum computing there are various computational models such as the standard
model with quantum circuits, the geometrical model with quantum gates derived
from holonomy groups and the adiabatic model with its application of the adiabatic
theorem of the quantum mechanics [30]. All these models are very well known in
quantum computing and computer science and it is not necessary to describe them
here.

In the present work we use the adiabatic method [30] and in the following
subsection we present an adiabatic gravitational algorithm for the computation of the
Kauffman bracket of a given link.

The AJL algorithm and its generalizations are proposed inside the domain of the
anyonic topological quantum computing. As we said previously, in ATQC there are
by at least four strategies to generate topological quantum algorithms for the
computation of the Jones polynomial of a given link. The first is the original
Freedman-Kitaev-Larsen-Wang using universal topological unitary functors and
unitary representations of the braid groups. The second is the line Aharonov-Jones-
Landau - Worcjan-Yard, using only algebra, it is to say, representation theory of the
Temperley-Lieb algebras. The third is the methodology given by Rasseti-Sanardi
using quantum spin networks as quantum cellular automata. And the fourth is the line
Kauffman-Lomonaco-Zhang-Ge using yang-baxterization and the Kauffman’s
Temperley-Lieb recoupling theory. All these strategies are keeping at hand the anyon
systems as the possible physical referents for a future implementation of the TQC.

But it is possible to think about other alternatives such as DNA computing and
GTQC. In particular in GTQC is possible to formulate certain algorithm for the
computation of the Kauffman bracket. The characteristic of our gravitational
algorithm are:

It is based on the equations (13)-(21) which are showing the role of the Kauffman
bracket in loop quantum gravity.

Our algorithm uses the well known adiabatic theorem of the quantum mechanics.
The physical computer for our algorithm is the quantum space-time.

The structure of our algorithm is the following:
Initialization is given using (20) and (21) for the case of an unknot, that is

 0)(20 =ΟVH (22)

 0)(30 =ΟVH (23)

according with

)()(32 Ο+Ο= bVaVI (24)

in such way that

 00 =IH (25)

208 M. Vélez and J. Ospina

The coding of the given link is realized using (13) for a certain Ahstekar
connection in such way that (19) is satisfied. As we can to observe from (25) the
initial state is an eigenstate of the Hamiltonian H0 associated to the eigenvalue zero
and as we can observe from (19) the Kauffman bracket is also an eigenstate of the
Hamiltonian HΛ corresponding to the eigenvalue zero.

The adiabatic interpolation between H0 and HΛ is given by the following
Hamiltonian

 Λ+−= H
T

t
H

T

t
TtH)()1(),(0 (26)

where is immediately obvious that H(0)=H0 and H(T)=HΛ being t the interpolation
parameter and T the duration of execution of the algorithm.
Using the Hamiltonian (26) build the Schrodinger equation

 tTtHt
t

i (),()(Ψ=Ψ
∂
∂

h (27)

with the initial condition

 I=Ψ)0((28)

where ⎪I > is given by (24)
Given a value of T, solve the Schrodinger equation (27) with (28) with the aim to

obtain the state ⎪Ψ(T)>.
If for the considered value of T, some component of ⎪Ψ(T)> has a probability

more greater than 0.5, then the algorithm is finished and the dominant component of
⎪Ψ(T)> is justly the Kauffman bracket for given link L. This is due to the adiabatic
theorem and the equation (19). But if ⎪Ψ(T)> has no a dominant component then a
new more greater value of T is assigned and the algorithm is executed again.

This gravitational topological adiabatic quantum algorithm, constitutes an example
of a quantum adiabatic speedup that relies on the topological order that it is inherent
to the space-time in loop quantum gravity.

It is possible to think about the possible generalizations of our gravitational
algorithm for the computation of other more stronger link invariants. For example
given the actual developments in knot theory is very sensitive to think about the
possibility to have topological quantum algorithms for invariant polynomials of knots,
links and tangles, directly derived from very recently mathematical theories as the
Khovanov cohomology [7]. In this point we declare that it is very interesting to try to
exploit from the perspective of the quantum informatics in general and from the
perspective of the GTQC in particular, the Khovanov cohomology for knots, links
and tangles.

Specifically, we conjecture the existence of a quantum algorithm from the
Khovanov comology This algorithm is initially written in a certain quantum high
level language and for then it must to be compiled and translated to the quantum
machine language corresponding to a quantum gravitational computer whose
processors are tangles in the quantum space-time. In relation with this it is worthwhile
to remark that in the paper [21] was given a construction of a family of tangle field

 Gravitational Topological Quantum Computation 209

theories related to the HOMFLY polynomial invariant of links. Such construction can
be exploited from the perspective of the TQC in the sense that it is possible to have
certain extended AJL algorithm inside the realm of the GTQC. It is due to that these
tangle field theories produce unitary representations of the tangle group. From other
side the calculations in tangle field theory are simplified because the basic equations
in TFT include the skein relations for the HOMFLY polynomial.

More in detail, the mathematical algorithm invented by Khovanov has the
following structure: given a knot or link or tangle, its generic plane projection is
derived and associated with certain hypercube of smoothings and cobordisms. Then
this hypercube is converted in a complex of homological algebra for which is
associated the appropriate collection of bi-graded cohomology groups. The resulting
cohomology generates the bi-graded Poincaré polynomial which gives the bi-graded
Euler characteristic and this last is precisely the Jones polynomial.

This algorithm is originally for the categorification of the Jones polynomial but
the Jones polynomial extends to a functor from the category of tangles to the category
of vector spaces and for then the algorithm also gives the categorification of the
topological invariants for tangles which are actually computed by the quantum
gravitational process inside a tangled quantum space-time.

The extended functor associates a plane with n marked points with the tensorial
power V ⊗n, where V is the two-dimensional irreducible representation of the
quantum group Uq(sl2). From the other side, the extended functor associates to an
oriented tangle L with n bottom and m top endpoints , an operator J(L) : V ⊗n → V ⊗m
which intertwines the Uq(sl2) action. In quantum informatics we have the following.
The space V is interpreted as the space of a single qbit, the tensorial power V ⊗n is the
space for n qbits, the tangle operator J(L) is a quantum gate with an input of n qbits
and an output of m qbits. And finally a qbit is certain quantum system whose
dynamical symmetry is Uq(sl2) and for hence its quantum states are given by the two-
dimensional irreducible representation of the quantum group Uq(sl2).

With all these, the Khovanov-BarNatan algorithm for the computation of tangle
homology and its characteristic classes, has the same form that the previously
described Khovanov algorithm for the Jones polynomial, the only difference is that
now the Euler characteristic reproduces the Kauffman bracket extended to tangles.
Finally we mention the Khovanov-Rozansky algorithm which has the same structure
than the previously described but with the difference that in this case the Euler
characteristic reproduces the HOMFLY polynomial.

All these Khovanov algorithms are not yet quantum algorithms but we conjecture
that the prominent role of tangles both in quantum gravity as in Khovanov homology
is very plausible that a quantum algorithm for Khovanov homology can be based on
GTQC.

From other side is very remarkable that recently, a relationship between Khovanov
homology and topological strings, was discovered [31]. This discovery implies that is
possible to use topological string theory in quantum computing as generalization of
the usual TQFT, in this sense is coined the label Stringy Topological Quantum
Computation (STQC) as a computational model which is a very closer relative to the
GTQC.

210 M. Vélez and J. Ospina

4 Applications of GTQC in Computer Science

All models that were mentioned before, such as anyonic topological quantum
computation, gravitational topological quantum computation, stringy topological
quantum computation and DNA computing share in common that their computational
powerful are directed to the solution of topology problems, specifically problems for
braids, knots, links and tangles.

Many of these problems are hard problems and for hence all these alternative
models and concretely the GTQC may be useful in computer science, specifically in
the theory of algorithmic complexity.

From the other side other many problems in low dimension topology and knot
theory are incomputable problems and again, the alternative models and particularly
the GTQC may be useful in the theory of computability.
For hence in this section we discuss the possible applications of GTQC in computer
science. Such applications can be in quantum complexity theory and in the
computability theory.

It is well known that the simple Mathematica algorithm for computation of the
Kauffman bracket of any knot and link, that was given in Table 1, has an asymptotic
consumption of resources, such as time and space, which is exponential respect to the
topological complexity of the knot input. In fact, the problem of computation of
the Jones polynomial of a given link is a #P –hard problem [3,4,5]. More over, the
generalized problems for the computation of the HOMFLY and Kauffman
polynomials are also #P-hard [4,5]; but it is possible to conjecture that the problem of
computation of the Khovanov cohomology of any link, is a problem with a more
higher complexity than the #P-hardness, given the Khovanov polynomial is more
powerful than the Jones polynomials [14].

From other side is very instructive to analyze the relationships between the link
invariants, such as the Jones polynomial, HOMFLY polynomial, Kauffman
polynomial and Khovanov homology; and the quantum computation. This analysis is
a necessary preliminary step toward the understanding of the capabilities and
limitations of the quantum computers in general and the topological quantum
computers in particular such as the anyonic topological quantum computers, the
gravitational topological quantum computers and the stringy topological quantum
computers.

It is necessary to remark here that the AJL algorithm does not pretend to solve the
#P-hard problem of the Jones polynomial, its intention is to solve the problem of
approximating the Jones polynomial at certain values being such problem of
approximation one that is BQP-hard. In this point is possible to conjecture that the
approximated computations of the HOMFLY, Kauffman and Khovanov polynomials
are again BQP-hard problems and for hence they demand all the computational power
power of the quantum computing.

More in detail, the fact that the computation of the Jones polynomial is a #P-hard
problem indicates that it is not possible to have a polynomial algorithm of any kind,
classic or quantum , for the computation of the Jones polynomial, it is for the solution
of a #P-hard problem. This affirmation can be sustained by the following arguments:

 Gravitational Topological Quantum Computation 211

1. To spite that there is not a explicit proof of that NP is more hard than P, the
majority of experts believe that it is true.

2. #P-hard is more hard than NP.
3. The problem of Jones polynomial is #P-hard

From these three arguments is derived that is very improbable that an algorithm
exists in P for the computation of the Jones polynomial and similarly for the
HOMFLY and Kauffman polynomials.

As we said before, actually is not known the algorithmic complexity of the
problem of computation of the Khovanov homology for knots, links and tangles. We
believe that this new problem is more hard than #P-hard. We believe that, because the
Khovanov homology is a more stronger topological invariant that the Jones
polynomial; and given the problem of Jones polynomial is #P-hard is natural to
conjecture that the problem of Khovanov homology is very more difficult that #P-
hard. More over, given that recently the Khovanov polynomial was considered as a
particular case of the Lefschetz polynomial for link endo-cobordisms, it is possible to
speculate that the computation of the Lefschetz polynomial is a problem which is
more hard than the Khovanov polynomial which is believed more hard than #P-hard.

It is well known that there are many non-computable problems, it is to say non-
computable by a Turing machine or DNA computer or a standard quantum computer
(quantum circuits, geometrical quantum computer, anyonic topological quantum
computer). A classical example of a non-computable problem is the Halting Problem
which is equivalent to the Hilbert’s tenth problem. This problem arises in number
theory but it is possible to mention other non-computable problems which arise in
algebra and topology, such as the word problem and the homeomorphism problem. It
is necessary to say that the very low dimensional topology (d<4) appears as
invulnerable with respect to the logical problems and for hence it is computable at
full, given that the knot problem(to decide when an entanglement is really a knot and
when two knots are equivalent), the word problem and the homeomorphism problem
are soluble. But the Jones polynomial, the Kauffman polynomial and the Khovanov
polynomial have not the capability of to solve the knot problem and it is an open
problem the question that if the computable knot problem can be solved using some
generalized kind of invariant polynomial.

Now, in the case of more higher dimensions (d>3) the knot problem, the word
problem and the homeomorphism problem are non-computable. The word problem
for groups refers to the question of to decide whether a given product of generators
and their inverses is the identity and the homeomorphism problems refers to the
question of to decide whether two topological spaces which are defined by a given
pair of simplicial complexes are homeomorphic. The word problem and the
homeomorphism problem have relationships with the Halting problem and the
Hilbert’s tenth problem and all these non-computable problems belong to the first
grade of Turing non-computability, denoted as 0’.

Alright, in this point we make the claim that these non-computable problems can
be computed using certain kind of hypercomputer which is based on GTQC.
Specifically the knot problem and the homeomorphism problem can be solved in four
dimensions using the formulation of the four dimensional quantum gravity as a
topological quantum field theory whose observables are topological invariants. We
conjecture that the homeomorphism problem can be translated in a problem of

212 M. Vélez and J. Ospina

cobordism in quantum gravity and for hence it is possible to design an adiabatic
quantum algorithm which has the capability of hyper-computing in the sense that
such hyper-algorithm is able to solve a non-computable problem, namely the
homeomorphism problem.

5 Conclusions

In this work certain model of gravitational topological quantum computation was
presented. An algorithm for the computation of the Kauffman bracket was
constructed. This algorithm is based on the topological adiabatic quantum
computation and the loop quantum gravity. Some discussion about the possible
applications of the GTQC in computer science were realized and some conjectures
were formulated. These conjectures refer to the computational complexity of the
Khovanov polynomial and its generalizations. Our conjecture says that such
complexity is more higher that #P-hard but the complexity of the approximated
problem remains BQP-hard.

In all case we believe that the tangles bi-categories and the Khovanov cohomology
are very important in geometric topology and they can be relevant also in quantum
gravity, topological quantum field theory, topological string theory, anyonic
topological quantum computation, gravitational topological quantum computation
and stringy topological quantum computation.

From other side, in the realm of the computability theory we made the claim that
the GTQC can get the basis for the construction of a hyper-computer and the
corresponding hyper-algorithm for the solution of non-computable problems such as
the knot problem, the word problem and the homeomorphism problem.

From these perspectives we think that the new advances in knot theory and
topological quantum computation are very important in computer science and for
hence all these new alternative models of computation deserve an intensive
investigation.

References

[1] Davis, M.: Computability and Unsolvability. McGraw-Hill Book Company, Inc. New
York (1958)

[2] Chuang, I.L., Nielsen, M.A.: Quantum computation and quantum information. Cambridge
University Press, Cambridge (2000)

[3] Freedman, M.H., Larsen, M., Wang, Z.: A modular Functor which is universal for
quantum computation. Commun.Math.Phys. 227(3), 605–622 (2002)

[4] Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating
the Jones polynomial, quant-ph/0511096. In: STOC 06

[5] Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applicationsin
quantum complexity theory, quant-ph/0603069

[6] Griego, J.: The Kauffman Bracket and the Jones polynomial in quantum gravity. Nucl.
Phys. B 467, 332–354 (1996)

[7] Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–
426 (2000)

 Gravitational Topological Quantum Computation 213

[8] Witten, E.: Quantum field Theory and the Jones Polynomial. Commun. Math. Phys. 121,
351–399 (1989)

[9] Kauffman, L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987)
[10] Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation.

Mathematical challenges of the 21st century (Los Angeles, CA, 2000). Bull. Amer. Math.
Soc (N.S.) 40(1), 31–38 (2003)

[11] Kauffman, L.H., Lomonaco, S.: q-Deformed Spin Networks, Knot Polynomials and
Anyonic Topological Quantum Computation. quant-ph/0606114 v2

[12] Kauffman, L.H., Lomonaco, S.J.: Braiding Operators are Universal QuantumGates. New
Journal of Physics 6(134), 1–39 (2004)

[13] Kauffman, L.H., Lomonaco, Jr., S.J.: Topological quantum computingand the Jones
polynomial, quant-ph/0605004. In: SPIE Proceedings (2006)

[14] Bar-Natan, D.: On Khovanov’s categorification of the Jones polynomial. Algebraic &
Geometric Topology 2, 337–370 (2002)

[15] Jones, V.F.R: A polynomial invariant for knots via von Neumann algebras. Bull.Amer.
Math. Soc. 12(1), 103–111 (1985)

[16] Kauffman, L.H., Lomonaco, Jr., S.J.: Entanglement Criteria - Quantum and Topological.
In: Donkor, Pinch, Brandt. (eds.) Quantum information and computation-Spie
Proceedings, 21-22 April, 2003, Orlando, FL, vol. 5105, pp. 51–58 (2003)

[17] Bigelow, S.: Braid Groups and Iwahori-Hecke Algebras, math-GT/0505064
[18] Artin, E.: Theory of braids. Annals of Mathematics 48, 101–126 (1947)
[19] Temperley, H., Lieb, E.: Relations between the ‘percolation’ and ‘colouring’ problem and

other graph-theoretical problems associated with regular planar lattices: Some exact
results for the ‘percolation’ problem. Proceedings of theRoyal Society of London
A 322(1549), 251–280 (1971)

[20] Kauffman, L.H.: Temperley-Lieb Recoupling Theory and Invariants ofThree-Manifolds.
In: Annals Studies, vol. 114, Princeton University Press, Princeton, NJ (1994)

[21] Baez, J.C.: Quantum Gravity and the Algebra of Tangles. Class. Quant.Grav. 10,
673–694 (1993)

[22] Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang-Baxterizations, Universal QuantumGates
and Hamiltonians. Quant. Inf. Proc. 4, 159–197 (2005)

[23] Garnerone, S., Marzuolli, A., Rasseti, M.: An efficient quantum algorithm for colored
Jones polynomials, quant-ph/0606167

[24] Kitaev, A.: Anyons in an exactly solved model and beyond, arXiv.cond-mat/0506438 v1
17 (June 2005)

[25] Kauffman, L.H., Liko, T.: hep-th/0505069, Knot theory and a physical state of quantum
gravity, Classical and Quantum Gravity, vol. 23, pp. R63 (2006)

[26] Rovelli, C., Smolin, L.: Spin networks and quantum gravity. Phys. Rev. D. 52, 5743–
5759 (1995)

[27] Brun, T.A.: Computers with closed timelike curves can solve hard problems. Found.
Phys. Lett. 16, 245–253 (2003)

[28] Srikanth, R.: The quantum measurement problem and physical reality:a computation
theoretic perspective, quant-ph/0602114

[29] Etesi, G., Nemeti, I.: Non-Turing computations via Malament-Hogarth space-times. Int.
J.Theor.Phys. 41, 341–370 (2002)

[30] Hamma, A., Lidar, D.A.: Topological Adiabatic Quantum Computation, quant-ph/
0607145

[31] Gukov, S., Schwarz, A., Vafa, C.: Khovanov-Rozansky Homology and Topological
Strings. Lett.Math.Phys. 74, 53–74 (2005)

Computation in

Sofic Quantum Dynamical Systems

Karoline Wiesner and James P. Crutchfield

Center for Computational Science & Engineering and Physics Department,
University of California Davis, One Shields Avenue, Davis, CA 95616

karoline@cse.ucdavis.edu, chaos@cse.ucdavis.edu

Abstract. We analyze how measured quantum dynamical systems store
and process information, introducing sofic quantum dynamical systems.
Using recently introduced information-theoretic measures for quantum
processes, we quantify their information storage and processing in terms
of entropy rate and excess entropy, giving closed-form expressions where
possible. To illustrate the impact of measurement on information storage
in quantum processes, we analyze two spin-1 sofic quantum systems that
differ only in how they are measured.

1 Introduction

Symbolic dynamics originated as a method to study general dynamical systems
when, nearly 100 years ago, Hadamard used infinite sequences of symbols to
analyze the distribution of geodesics; see Ref. [1] and references therein. In the
1930’s and 40’s Hedlund and Morse coined the term symbolic dynamics [2,3].
In the 1940’s Shannon used sequence spaces to describe information channels
[4]. Subsequently, the techniques and ideas have found significant applications
beyond dynamical systems, in data storage and transmission, as well as linear
algebra [5].

On the other side of the same coin one finds finite-state automata that are used
as codes for sequences. Sequences that can be coded this way define the regular
languages. Dynamical systems can also be coded with finite-state automata.
Transforming a dynamical system into a finite-state code is done using the tools
from symbolic dynamics [5]. Sofic systems are the particular class of dynamical
systems that are the analogs of regular languages in automata theory.

Yet another thread in the area of dynamical systems—the study of the quan-
tum behavior of classically chaotic systems—gained much interest [6,7], most
recently including the role of measurement. It turns out that measurement
interaction leads to genuinely chaotic behavior in quantum systems, even far
from the semi-classical limit [8]. Classical dynamical systems can be embedded
in quantum dynamical systems as the special class of commutative dynamical
systems, which allow for unambiguous assignment of joint probabilities to two
observations [9].

An attempt to construct symbolic dynamics for quantum dynamical systems
was made by Beck and Graudenz [10] and Alicki and Fannes [9]. Definitions

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 214–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computation in Sofic Quantum Dynamical Systems 215

of entropy followed from this. However, no connection to quantum finite-state
automata was established there.

Here we forge a link between quantum dynamical systems and quantum com-
putation in general, and with quantum automata in particular, by extending con-
cepts from symbolic dynamics to the quantum setting. The recently introduced
computational model class of quantum finite-state generators provides the requi-
red link between quantum dynamical systems and the theory of automata and for-
mal languages [11]. It gives access to an analysis of quantum dynamical systems
in terms of symbolic dynamics. Here, we strengthen that link by studying explicit
examples of quantum dynamical systems. We construct their quantum finite-state
generators and establish their sofic nature. In addition we review tools that give
an information-theoretic analysis for quantifying the information storage and pro-
cessing of these systems. It turns out that both the sofic nature and information
processing capacity depend on the way a quantum system is measured.

2 Quantum Finite-State Generators

To start, we recall the quantum finite-state generators (QFGs) defined in Ref.
[11]. They consist of a finite set of internal states Q = {qi : i = 1, . . . , |Q|}. The
state vector is an element of a |Q|-dimensional Hilbert space: 〈ψ| ∈ H. At each
time step a quantum generator outputs a symbol s ∈ A and updates its state
vector.

The temporal dynamics is governed by a set of |Q|-dimensional transition
matrices {T (s) = U · P (s), s ∈ A}, whose components are elements of the
complex unit disk and where each is a product of a unitary matrix U and a
projection operator P (s). U is a |Q|-dimensional unitary evolution operator that
governs the evolution of the state vector 〈ψ|. P = {P (s) : s ∈ A} is a set
of projection operators—|Q|-dimensional Hermitian matrices—that determines
how the state vector is measured. The operators are mutually orthogonal and
span the Hilbert space:

∑
s P (s) = �.

Each output symbol s is identified with the measurement outcome and labels
one of the system’s eigenvalues. The projection operators determine how output
symbols are generated from the internal, hidden unitary dynamics. They are the
only way to observe a quantum process’s current internal state.

A quantum generator operates as follows. Uij gives the transition amplitude
from internal state qi to internal state qj . Starting in state vector 〈ψ0| the gen-
erator updates its state by applying the unitary matrix U . Then the state vec-
tor is projected using P (s) and renormalized. Finally, symbol s ∈ A is emit-
ted. In other words, starting with state vector 〈ψ0|, a single time-step yields
〈ψ(s)| = 〈ψ0|U · P (s), with the observer receiving measurement outcome s.

2.1 Process Languages

The only physically consistent way to describe a quantum system under iter-
ated observation is in terms of the observed sequence

↔
S ≡ . . . S−2S−1S0S1 . . .

216 K. Wiesner and J.P. Crutchfield

of discrete random variables St. We consider the family of word distributions,
{Pr(st+1, . . . , st+L) : st ∈ A}, where Pr(st) denotes the probability that at time
t the random variable St takes on the particular value st ∈ A and Pr(st+1, . . . ,
st+L) denotes the joint probability over sequences of L consecutive measurement
outcomes. We assume that the distribution is stationary:

Pr(St+1, . . . , St+L) = Pr(S1, . . . , SL) . (1)

We denote a block of L consecutive variables by SL ≡ S1 . . . SL and the lowercase
sL = s1s2 · · · sL denotes a particular measurement sequence of length L. We
use the term quantum process to refer to the joint distribution Pr(

↔
S) over the

infinite chain of random variables. A quantum process, defined in this way, is
the quantum analog of what Shannon referred to as an information source [12].

Such a quantum process can be described as a stochastic language L, which
is a formal language with a probability assigned to each word. A stochastic
language’s word distribution is normalized at each word length:∑

{sL∈L}

Pr(sL) = 1 , L = 1, 2, 3, . . . (2)

with 0 ≤ Pr(sL) ≤ 1 and the consistency condition Pr(sL) ≥ Pr(sLs).
A process language is a stochastic language that is subword closed : all sub-

words of a word are in the language.
We can now determine word probabilities produced by a QFG. Starting the

generator in 〈ψ0|, the probability of output symbol s is given by the state vector
without renormalization:

Pr(s) = 〈ψ(s)|ψ(s)〉 . (3)

While the probability of outcome sL from a measurement sequence is

Pr(sL) = 〈ψ(sL)|ψ(sL)〉 . (4)

In [11] the authors established a hierarchy of process languages and the cor-
responding quantum and classical computation-theoretic models that can recog-
nize and generate them.

2.2 Alternative Quantum Finite-State Machines

Said most prosaically, we view quantum generators as representations of the
word distributions of quantum process languages. Despite similarities, this is a
rather different emphasis than that used before. The first mention of quantum
automata as an empirical description of physical properties was made by Al-
bert in 1983 [13]. Albert’s results were subsequently criticized by Peres for using
an inadequate notion of measurement [14]. In a computation-theoretic context,

Computation in Sofic Quantum Dynamical Systems 217

quantum finite automata were introduced by several authors and in varying ways,
but all as devices for recognizing word membership in a language. For the most
widely discussed quantum automata, see Refs. [15,16,17]. Ref. [18] summarizes
the different classes of languages which they can recognize. Quantum transducers
were introduced by Freivalds and Winter [19]. Their definition, however, lacks
a physical notion of measurement. We, then, introduced quantum finite-state
machines, as a type of transducer, as the general object that can be reduced
to the special cases of quantum recognizers and quantum generators of process
languages [11].

3 Information Processing in a Spin-1 Dynamical System

We will now investigate concrete examples of quantum processes. Consider a
spin-1 particle subject to a magnetic field which rotates the spin. The state
evolution can be described by the following unitary matrix:

U =

⎛⎝ 1√
2

1√
2

0
0 0 −1

− 1√
2

1√
2

0

⎞⎠ . (5)

Since all entries are real, U defines a rotation in R
3 around the y-axis by angle

π
4 followed by a rotation around the x-axis by an angle π

2 .
Using a suitable representation of the spin operators Ji [20, p. 199]:

Jx =

⎛⎝0 0 0
0 0 i
0 −i 0

⎞⎠ , Jy =

⎛⎝ 0 0 i
0 0 0
−i 0 0

⎞⎠ , Jz =

⎛⎝ 0 i 0
−i 0 0
0 0 0

⎞⎠ , (6)

the relation Pi = 1 − J2
i defines a one-to-one correspondence between the pro-

jector Pi and the square of the spin component along the i-axis. The resulting
measurement answers the yes-no question, Is the square of the spin component
along the i-axis zero?

Consider the observable J2
y . Then the following projection operators together

with U in Eq. (5) define a quantum finite-state generator:

P (0) = |010〉 〈010|
and P (1) = |100〉 〈100|+ |001〉 〈001| . (7)

A graphical representation of the automaton is shown in Fig. 1. States A,
B, and C correspond to the eigenstates 〈100|, 〈010|, and 〈001|, respectively, of
the observable J2

y . The amplitudes attached to the transitions are given by the
unitary matrix in Eq. (5). Since eigenstates A and C have degenerate eigenvalues
the output symbol is the same when the machine enters either of these states.

The process language generated by this QFG is the so-called Golden-Mean
Process language [1]. The word distribution is shown in Fig. 2. It is characterized

218 K. Wiesner and J.P. Crutchfield

C B

−1/√2 | 1

A

1/√2 | 1

1/√2 | 0

1/√2 | 0

−1.0 | 1

Fig. 1. The Golden Mean quantum generator. For details, see text.

0.0 1.0

L = 9

0.0 1.0

L = 8

0.0 1.0
-10

0 L = 7

-10

0 L = 1

-10

0 L = 4

L = 2 L = 3

L = 5 L = 6

lo
g 2 P

r(
sL

)

sL

lo
g 2 P

r(
sL

)
lo

g 2 P
r(

sL
)

sL sL

Fig. 2. Golden Mean process language: Word {00} has zero probability; all others have
nonzero probability. The logarithm base 2 of the word probabilities is plotted versus the
binary string sL, represented as base-2 real number “0.sL”. To allow word probabilities
to be compared at different lengths, the distribution is normalized on [0, 1]—that is,
the probabilities are calculated as densities.

by the set of irreducible forbidden words F = {00}: no consecutive zeros occur.
In other words, for the spin-1 particle the spin is never measured twice in a row
along the y-axis. This restriction—the dominant structure in the process—is a
short-range correlation since the measurement outcome at time t only depends
on the immediately preceding one at time t − 1. If the outcome is 0, the next
outcome will be 1 with certainty. If the outcome is 1, the next measurement is
maximally uncertain: outcomes 0 and 1 occur with equal probability.

Computation in Sofic Quantum Dynamical Systems 219

C B

−1/√2 | 0

A

1/√2 | 0

1/√2 | 1

1/√2 | 1

−1.0 | 1

Fig. 3. The Even Process quantum generator

0.0 1.0

L = 9

0.0 1.0

L = 8

0.0 1.0
-10

0 L = 7

-10

0 L = 1

-10

0 L = 4

L = 2 L = 3

L = 5 L = 6

lo
g 2 P

r(
sL

)

sL

lo
g 2 P

r(
sL

)
lo

g 2 P
r(

sL
)

sL sL

Fig. 4. Even Process language: Words {012k−10}, k = 1, 2, 3, ... have zero probability;
all others have nonzero probability

Consider the same Hamiltonian, but now use instead the observable J2
x . The

corresponding projection operators are:

P (0) = |100〉 〈100|
and P (1) = |010〉 〈010|+ |001〉 〈001| . (8)

The QFG defined by U and these projection operators is shown in Fig. 3. States
A, B, and C correspond to the eigenstates of the observable J2

x . Since J2
x and

J2
y commute they have the same eigenstates. The process language generated by

this QFG is the so-called Even Process language [21,1]. The word distribution

220 K. Wiesner and J.P. Crutchfield

is shown in Fig. 4. It is defined by the infinite set of irreducible forbidden words
F = {012k−10}, k = 1, 2, 3, That is, if the spin component equals 0 along the
x-axis it will be zero an even number of consecutive measurements before being
observed to be nonzero. This is a type of infinite correlation: For a possibly
infinite number of time steps the system tracks the evenness or oddness of the
number of consecutive measurements of “spin component equals 0 along the
x-axis”.

Note that changing the measurement, specifically choosing J2
z as the observ-

able, yields a QFG that generates Golden Mean process language again.
The two processes produced by these quantum dynamical systems are well

known in the context of symbolic dynamics [5]—a connection we will return to
shortly. Let us first turn to another important property of finite-state machines
and explore its role in computational capacity and dynamics.

4 Determinism

The label determinism is used in a variety of senses, some of which are seemingly
contradictory. Here, we adopt the notion, familiar from automata theory [22],
which differs from that in physics, say, of non-stochasticity. One calls a finite-
state machine (classical or quantum) deterministic whenever the transition from
one state to the next is uniquely determined by the output symbol (or input sym-
bol for recognizers). It is important to realize that a deterministic finite-state
machine can still behave stochastically—stochasticity here referring to the posi-
tive probability of generating symbols. Once the symbol is determined, though,
the transition taken by the machine to the next state is unique. Thus, what is
called a stochastic process in dynamical systems theory can be described by a
deterministic finite-state generator without contradiction.

We can easily check the two quantum finite-state machines in Figs. 1 and
3 for determinism by inspecting each state and its outgoing transitions. One
quickly sees that both generators are deterministic. In contrast, the third QFG
mentioned above, defined by U in Eq. (5) and J2

z , is nondeterministic.
Determinism is a desirable property for various reasons. One is the simplicity

of the mapping between observed symbols and internal states. Once the observer
synchronizes to the internal state dynamics, the output symbols map one-to-one
onto the internal states. In general, though, the observed symbol sequences do
not track the internal state dynamics (orbit) directly. (This brings one to the
topic of hidden Markov chains [23].)

For optimal prediction, however, access to the internal state dynamics is key.
Thus, when one has a deterministic model, the observed sequences reveal the
internal dynamics. Once they are known and one is synchronized, the process be-
comes optimally predictable. A final, related reason why determinism is desirable
is that closed-form expressions can be given for various information processing
measures, as we will discuss in Sec. 6.

Computation in Sofic Quantum Dynamical Systems 221

5 Sofic Systems

In symbolic dynamics, sofic systems are used as tractable representations with
which to analyze continuous-state dynamical systems [5,1]. Let the alphabet A
together with an n× n adjacency matrix (with entries 0 or 1) define a directed
graph G = (V, E) with V the set of vertices and E the set of edges. Let X
be the set of all infinite admissible sequences of edges, where admissible means
that the sequence corresponds to a path through the graph. Let T be the shift
operator on this sequence; it plays the role of the time-evolution operator of the
dynamical system. A sofic system is then defined as the pair (X, T) [24]. The
Golden Mean and the Even process are standard examples of sofic systems. The
Even system, in particular, was introduced by Hirsch et al in the 1970s [21].

Whenever the rule set for admissible sequences is finite one speaks of a subshift
of finite type. The Golden Mean process is a subshift of finite type. Words in the
language are defined by the finite (single) rule of not containing the subword 00.
The Even Process, on the other hand, is not of finite type, since the number of
rules is infinite: The forbidden words {012k+10} cannot be reduced to a finite
set. As we noted, the rule set, which determines allowable words, implies the
process has a kind of infinite memory. One refers, in this case, to a strictly sofic
system.

The spin-1 example above appears to be the first time a strictly sofic system
has been identified in quantum dynamics. This ties quantum dynamics to lan-
guages and quantum automata theory in a way similar to that found in classical
dynamical systems theory. In the latter setting, words in the sequences generated
by sofic systems correspond to regular languages—languages recognized by some
finite-state machine. We now have a similar construction for quantum dynamics.
For any (finite-dimensional) quantum dynamical system under observation we
can construct a QFG, using a unitary operator and a set of projection operators.
The language it generates can then be analyzed in terms of the rule set of admis-
sible sequences. One interesting open problem becomes the question whether the
words produced by sofic quantum dynamical systems correspond to the regular
languages. An indication that this is not so is given by the fact that finite-state
quantum recognizers can accept nonregular process languages [11].

6 Information-Theoretic Analysis

The process languages generated by the spin-1 particle under a particular obser-
vation scheme can be analyzed using well known information-theoretic quantities
such as Shannon block entropy and entropy rate [12] and others introduced in
Ref. [25]. Here, we will limit ourselves to the excess entropy. The applicability of
this analysis to quantum dynamical systems has been shown in Ref. [26], where
closed-form expressions are given for some of these quantities when the generator
is known.

We can use the observed behavior, as reflected in the word distribution,
to come to a number of conclusions about how a quantum process generates

222 K. Wiesner and J.P. Crutchfield

randomness and stores and transforms historical information. The Shannon en-
tropy of length-L sequences is defined

H(L) ≡ −
∑

sL∈AL

Pr(sL)log2Pr(sL) . (9)

It measures the average surprise in observing the “event” sL. Ref. [25] showed
that a stochastic process’s informational properties can be derived systematically
by taking derivatives and then integrals of H(L), as a function of L. For example,
the source entropy rate hμ is the rate of increase with respect to L of the Shannon
entropy in the large-L limit:

hμ ≡ lim
L→∞

[H(L)−H(L− 1)] , (10)

where the units are bits/measurement [12].
Ref. [26] showed that the entropy rate of a quantum process can be calculated

directly from its QFG, when the latter is deterministic. A closed-form expression
for the entropy rate in this case is given by:

hμ = −|Q|−1

|Q|−1∑
i=0

|Q|−1∑
j=0

|Uij |2 log2 |Uij |2 , (11)

The entropy rate hμ quantifies the irreducible randomness in processes: the ran-
domness that remains after the correlations and structures in longer and longer
sequences are taken into account.

The latter, in turn, is measured by a complementary quantity. The amount
I(

←
S ;

→
S) of mutual information [12] shared between a process’s past

←
S and its

future
→
S is given by the excess entropy E [25]. It is the subextensive part of

H(L):
E = lim

L→∞
[H(L)− hμL] . (12)

Note that the units here are bits.
Ref. [25] gives a closed-form expression for E for order-R Markov processes—

those in which the measurement symbol probabilities depend only on the previ-
ous R− 1 symbols. In this case, Eq. (12) reduces to:

E = H(R)−R · hμ , (13)

where H(R) is a sum over |A|R terms. Given that the quantum generator is
deterministic we can simply employ the above formula for hμ and compute the
block entropy at length R to obtain the excess entropy for the order-R quantum
process.

Ref. [26] computes these entropy measures for various example systems, in-
cluding the spin-1 particle. The results are summarized in Table 1. The value
for the excess entropy of the Golden Mean process obtained by using Eq. (13)
agrees with the value obtained from simulation data, shown in Table 1. The

Computation in Sofic Quantum Dynamical Systems 223

Table 1. Information storage and generation for example quantum processes: entropy
rate hμ and excess entropy E

Quantum Dynamical System
Spin-1 Particle

Observable J2
y J2

x

hμ [bits/measurement] 0.666 0.666
E [bits] 0.252 0.902

entropy hμ = 2/3 bits per measurement for both processes, and thus they have
the same amount of irreducible randomness. The excess entropy, though, differs
markedly. The Golden Mean process (J2

y measured) stores, on average, E ≈ 0.25
bits at any given time step. The Even Process (J2

x measured) stores, on average,
E ≈ 0.90 bits, which reflects its longer memory of previous measurements.

7 Conclusion

We have shown that quantum dynamical systems store information in their dy-
namics. The information is accessed via measurement. Closer inspection would
suggest even that information is created through measurement. The key conclu-
sion is that, since both processes are represented by a 3-state QFG constructed
from the same internal quantum dynamics, it is the means of observation alone
that affects the amount of memory. This was illustrated with the particular ex-
amples of the spin-1 particle in a magnetic field. Depending on the choice of
observable the spin-1 particle generates different process languages. We showed
that these could be analyzed in terms of the block entropy—a measure of uncer-
tainty, the entropy rate—a measure of irreducible randomness, and the excess
entropy—a measure of structure. Knowing the (deterministic) QFG representa-
tion, these quantities can be calculated in closed form.

We established a connection between quantum automata theory and quantum
dynamics, similar to the way symbolic dynamics connects classical dynamics and
automata. By considering the output sequence of a repeatedly measured quan-
tum system as a shift system we found quantum processes that are sofic systems.
Taking one quantum system and observing it in one way yields a subshift of finite
type. Observing it in a different way yields a (strictly sofic) subshift of infinite
type. Consequently, not only the amount of memory but also the soficity of a
quantum process depend on the means of observation.

This can be compared to the fact that, classically the Golden Mean and the
Even sofic systems can be transformed into each other by a two-block map. The
adjacency matrix of the graphs is the same. A similar situation arises here. The
unitary matrix, which is the corresponding adjacency matrix of the quantum
graph, is the same for both processes.

224 K. Wiesner and J.P. Crutchfield

The preceding attempted to forge a link between quantum dynamical systems
and quantum computation by extending concepts from symbolic dynamics to the
quantum setting. We believe the results suggest further study of the properties
of quantum finite-state generators and the processes they generate is necessary
and will shed light on a number of questions in quantum information processing.
One open technical question is whether sofic quantum systems are the closure of
quantum subshifts of finite-type, as they are for classical systems [24]. There are
indications that this is not so. For example, as we noted, quantum finite-state
recognizers can recognize nonregular process languages [11].

References

1. Kitchens, B.P.: Symbolic dynamics: one-sides, two-sided, and countable state
Markov shifts. Springer, Heidelberg (1998)

2. Hedlund, G.H., Morse, M.: Symbolic dynamics i. Amer. J. Math. 60, 815–866 (1938)
3. Hedlund, G.H., Morse, M.: Symbolic dynamics ii. Amer. J. Math. 62, 1–42 (1940)
4. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-

versity of Illinois Press, Champaign-Urbana (1962)
5. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-

bridge University Press, Cambridge (1995)
6. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, Heidel-

berg (1990)
7. Reichl, L.E.: The transition to chaos: Conservative classical systems and quantum

manifestations. Springer, New York (2004)
8. Habib, S., Jacobs, K., Shizume, K.: Emergence of chaos in quantum systems far

from the classical limit. Phys. Rev. Lett. 96, 10403–10406 (2006)
9. Alicki, R., Fannes, M.: Quantum dynamical systems. Oxford University Press,

Oxford (2001)
10. Beck, C., Graudenz, D.: Symbolic dynamics of successive quantum-mechanical

measurements. Phys. Rev. A 46(10), 6265–6276 (1992)
11. Wiesner, K., Crutchfield, J.P.: Computation in finitary quantum processes. e-print

arxiv/quant-ph/0608206 (submitted 2006)
12. Cover, T., Thomas, J.: Elements of Information Theory. Wiley-Interscience, Chich-

ester (1991)
13. Albert, D.Z.: On quantum-mechanical automata. Physics Letters 98A, 249–251

(1983)
14. Peres, A.: On quantum-mechanical automata. Physics Letters 101A, 249–250

(1984)
15. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.

Comp. Sci. 237, 275–306 (2000)
16. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: 38th

IEEE Conference on Foundations of Computer Science, pp. 66–75. IEEE Computer
Society Press, Los Alamitos (1997)

17. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circiuts with mixed states. In: 30th
Annual ACM Symposium on the Theory of Computing, pp. 20–30. ACM Press,
New York (1998)

18. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theoretical Computer Science 287, 299–311 (2002)

Computation in Sofic Quantum Dynamical Systems 225

19. Freivalds, R., Winter, A.: Quantum finite state transducers. Lect. Notes Comp.
Sci. 2234, 233–242 (2001)

20. Peres, A.: Quantum theory: concepts and methods. Kluwer Academic Publishers,
Dordrecht (1993)

21. Hirsch, M., Palis, J., Pugh, C., Shu, M.: Neighborhoods of hyperbolic sets. Inven-
tiones Math. 9, 121–134 (1970)

22. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

23. Bishop, C.M.: Pattern recognition and machine learning. Springer Verlag, Singa-
pore (2006)

24. Weiss, B.: Subshifts of finite type and sofic systems. Monatshefte für Mathe-
matik 77, 462–474 (1973)

25. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels
of entropy convergence. Chaos 13, 25–54 (2003)

26. Crutchfield, J.P., Wiesner, K.: Intrinsic quantum computation. e-print arxiv/
quant-ph/0611202 (submitted 2006)

Bond Computing Systems: A Biologically

Inspired and High-Level Dynamics Model for
Pervasive Computing�

Linmin Yang1, Zhe Dang1, and Oscar H. Ibarra2

1 School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

2 Department of Computer Science
University of California

Santa Barbara, CA 93106, USA

Abstract. Targeting at modeling the high-level dynamics of pervasive
computing systems, we introduce Bond Computing Systems (BCS) con-
sisting of objects, bonds and rules. Objects are typed but addressless
representations of physical or logical (computing and communicating)
entities. Bonds are typed multisets of objects. In a BCS, a configuration
is specified by a multiset of bonds, called a collection. Rules specifies
how a collection evolves to a new one. A BCS is a variation of a P sys-
tem introduced by Gheorghe Paun where, roughly, there is no maximal
parallelism but with typed and unbounded number of membranes, and
hence, our model is also biologically inspired. In this paper, we focus on
regular bond computing systems (RBCS), where bond types are regular,
and study their computation power and verification problems. Among
other results, we show that the computing power of RBCS lies between
LBA (linearly bounded automata) and LBC (a form of bounded multi-
counter machines) and hence, the regular bond-type reachability problem
(given an RBCS, whether there is some initial collection that can reach
some collection containing a bond of a given regular type) is undecid-
able. We also study some restricted models (namely, B-boundedness and
1-transfer) of RBCS where the reachability problem becomes decidable.

1 Introduction

As inexpensive computing devices (e.g., sensors, celluar phones, PDAs, etc.)
become ubiquitous in our daily life, pervasive computing [14], a proposal of
building distributed software systems from (a massive number of) such devices
that are pervasively hidden in the environment, is no longer a dream. An example
of pervasive computing systems is Smart Home [7], which aims to provide a set of

� The work by Linmin Yang and Zhe Dang was supported in part by NSF Grant
CCF-0430531. The work by Oscar H. Ibarra was supported in part by NSF Grant
CCF-0430945 and CCF-0524136.

S.G. Akl et al.(Eds.): UC 2007, LNCS 4618, pp. 226–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bond Computing Systems 227

intelligent home appliances that make our life more comfortable and efficient. In
Smart Home, a classic scenario is that as soon as a person goes back home from
the office, the meal is cooked and the air conditioner is turned on, etc. Another
example is a health monitoring network for, e.g., assisting the aged people [1]. In
the system, a typical scenario (which is also used throughout the paper) is that
when one gets seriously sick, a helicopter will, automatically, come and carry
him/her to a clinic.

However, how to design a complex pervasive computing application remains
a grand challenge. A way to respond to the challenge is to better understand,
both fundamentally and mathematically, some key views of pervasive computing.
Following this way, formal computation models reflecting those views are highly
desirable and, additionally, can provide theoretical guidelines for further devel-
oping formal analysis (such as verification and testing) techniques for pervasive
computing systems.

At a high-level, there are at least two views in modeling a pervasive computing
system. From the local view, one needs to formally model how a component or an
object interacts with the environment with the concept, which is specific to per-
vasive computing, of context-awareness [12] in mind using notions like Context
UNITY [10] and Context-Aware Calculus [15]. From the global view, one needs
to formally model how a group of objects evolve and interact with others, while
abstracting the lower-level communications away. An example of such a view
is the concept of communities in the design frame work PICO [13,4], where ob-
jects are (dynamically) grouped and collaborated to perform application-specific
services. Inspired by the communities concept in PICO, we introduce a formal
computation model in this paper, called bond computing systems (BCS), to re-
flect the global view for pervasive computing.

The basic building blocks of a BCS are objects, which are logical representa-
tions of physical (computing and communicating) entities. An object is typed but
not addressed (i.e., without an individual identifier; we leave addressing to the
lower-level (network) implementation). For instance, when a person is seriously
sick, we care about whether a helicopter will come instead of which helicopter
will come, under the simplest assumption that all helicopters share the same
type helicopter.

In a BCS, objects are grouped in a bond to describe how objects are associated.
For instance, a helicopter carrying a patient can be considered a bond (of two
objects). Later, when the helicopter picks up one more patient, the bond then
contains three objects. Since objects of the same type share the same name, a
bond is essentially a multiset of (typed) objects. A bond itself also has a type
to restrict how many and what kinds of objects that can be in the bond. In
our system, bonds do not overlap; i.e., one object cannot appear in more than
one bond at the same time (we leave overlapping and nested bonds in future
work).

In a BCS, a configuration is specified by a multiset of bonds, called a collection.
The BCS has a number of rules, each of which specifies how a collection evolves

228 L. Yang, Z. Dang, and O.H. Ibarra

to a new one. Basically, a rule consists of a number of atomic rules that are fired
in parallel, and each atomic rule specifies how objects transfer from a typed bond
to another.

Our bond computing systems are a variation of P systems introduced by
Gheorghe Paun [8]. A P system is an unconventional computing model motivated
from natural phenomena of cell evolutions and chemical reactions. It abstracts
from the way living cells process chemical compounds in their compartmental
structures. Thus, regions defined by a membrane structure contain objects that
evolve according to given rules. The objects can be described by symbols or by
strings of symbols, in such a way that multisets of objects are placed in regions
of the membrane structure. The membranes themselves are organized as a Venn
diagram or a tree structure where one membrane may contain other membranes.
By using the rules in a nondeterministic, maximally parallel manner, transitions
between the system configurations can be obtained. A sequence of transitions
shows how the system is evolving.

Our bond computing systems can be considered as P systems and hence are
also biologically inspired. The important features of a BCS, which are tailored
for pervasive computing, are the following:

1. The objects in a BCS can not evolve into other objects (e.g., a helicopter
object can not evolve into a doctor object in a BCS). This is because in per-
vasive computing systems, objects while offering services, mostly maintain
their internal structures.

2. The number of bonds in a BCS is unbounded. This makes it flexible to
specify a pervasive application with many instances of a community.

3. Each rule in a BCS is global, since the BCS is intended to model the dynam-
ics of a pervasive computing system as a whole rather than a specific bond. If
applicable, every two bonds can communicate with each other via a certain
rule. In tissue P systems [6,9], membranes are connected as a directed graph,
and one membrane can also communicate with others if there are rules be-
tween them, without the constraint of tree-like structures. However, in tissue
P systems, every rule can only connect two designated membranes, and in
BCS, bonds are addressless and hence one rule can be applied to multiple
pairs of bonds. Furthermore, the number of membranes in a tissue P system
is bounded.

4. There is no maximal parallelism in a BCS. Maximal parallelism, like in P
systems, is extremely powerful [8,3]. However, considering a pervasive com-
puting model that will eventually be implemented over a network, the cost
of implementing the maximal parallelism (which requires a global lock) is
unlikely realistic, and is almost impossible in unreliable networks [5]. Hence,
rules in a BCS fire asynchronously, while inside a rule, some local paral-
lelism is allowed. Notice that P systems without maximal parallelism have
been studied, e.g., in [2], where the number of membranes is fixed, while in
BCS, the number of nonempty bonds could be unbounded.

In this paper, we focus on regular bond computing systems (RBCS), where
bond types are regular, and study their computation power and verification

Bond Computing Systems 229

problems. Among other results, we show that the computing power of RBCS
lies between LBA (linearly bounded automata) and LBC (a form of bounded
multicounter machines) and hence, the following bond-type reachability problem
is undecidable: whether, for a given RBCS and a regular bond type L, there is
some initial collection that can reach some collection containing a bond of type L.
Given this undecidability result, we then study two forms of restrictions that can
be respectively applied on RBCS such that the bond-type reachability problem
becomes decidable. The first form of restricted RBCS is called B-bounded, where
each bond contains at most B objects. In this case, the bond-type reachability
problem is decidable by showing B-bounded RBCS can be simulated by vector
addition systems (i.e., Petri nets). The second form of restricted RBCS is called
1-transfer, where each rule contains only one atomic rule and transfers only one
type of objects. In this case, the bond-type reachability problem is also decidable
by introducing a symbolic representation of a set of reachable collections.

The rest of the paper is organized as follows. In Section 2, we give the definition
of bond computing systems along with an example. In Section 3, we study the
computing power of regular bond computing systems and show that the bond-
type reachability problem is undecidable in general for regular bond computing
systems. In Section 4, we study further restrictions on regular bond computing
systems such that the reachability problem becomes decidable. We conclude the
paper in Section 5.

2 Definitions

Let Σ = {a1, ..., ak} be an alphabet of symbols, where k ≥ 1. An instance
of a symbol is called an object. A bond w is a finite multiset over Σ, which
is represented by a string in a∗

1...a
∗
k. For example, the bond w = a3

2a
2
4a

5
7 is the

multiset consisting of three a2’s, two a4’s, and five a7’s. The empty (null) multiset
is denoted by the null string λ.

Throughout this paper, a language L over Σ will mean a subset of a∗
1...a

∗
k

(representing a set of multisets over Σ). L∅ will denote the language containing
only λ. Hence, a bond type, that is a (possibly infinite) set of finite multisets,
is simply a language L. Let L = {L∅, L1, ..., Ll} be l + 1 languages (i.e., bond
types), where l ≥ k, and for 1 ≤ i ≤ k, Li = {ai} (i.e., Li is the language
containing only the symbol ai). We will usually denote a regular language by a
regular expression, e.g., ai instead of {ai}.

A bond collection C is an infinite multiset of bonds, where there are only
finitely many nonempty bonds. A bond in the collection may belong to one or
more bond types in L or may not belong to any bond type in L at all.

Example 1. Consider the alphabet Σ = {p, h, c, d}, where p, h, c and d repre-
sent patient, helicopter, clinic and doctor, respectively. We also have bond types
L = {L∅, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10}, where each Li is specified by a
regular expression as follows:

– By definition, L1 = p, L2 = h, L3 = c and L4 = d.

230 L. Yang, Z. Dang, and O.H. Ibarra

– L5 = p∗h is to specify a “helicopter-patients” bond (i.e., a helicopter carrying
0 or more patients).

– L6 = p≤8c(d+dd) is to specify a “clinic-patients-doctors” bond (i.e., a clinic
housing at most 8 patients and with 1 or 2 doctors).

– L7 = p8cd2 is to specify a “clinic-patients-doctors” bond that has 8 patients
and 2 doctors exactly.

– L8 = p8cd3 is to specify a “clinic-patients-doctors” bond that has 8 patients
and 3 doctors exactly.

– L9 = cd is used to specify a “clinic-patients-doctors” bond but with one
doctor and no patient.

– L10 = p>8cd>2 is to specify a “clinic-patients-doctors” bond but with more
than 8 patients and more than 2 doctors.

A bond collection C specifies a scenario of how patients, helicopters and clinics
are bonded together. For instance, let C be a multiset of bonds

{p, p, h, d, d, p2h, ph, p4cd, p8cd2}

(we omit all the empty bonds λ when writing C). This C indicates that we have
totally 17 patients, 3 helicopters, 2 clinics, and 5 doctors, where one helicopter
carries 2 patients, one helicopter carries 1 patient, and the remaining helicopter
carries none. Also in the collection, one clinic has 4 patients and 1 doctor (while
the other one has 8 patients and two doctors). This collection is depicted in
the left hand side of Figure 1. Notice that a bond does not neccessarily mean a
“physical bond” (like a patient boarding a helicopter). For instance, the patient
and the insurance company with which the patient is subscribed are “logically”
(instead of “physically”) bonded. �

A rule specifies how objects are transferred between bonds with certain types.
Formally, a rule R consists of a finite number of atomic rules r, each of which is
in the following form:

(L)leftr

αr→ (L′)rightr
, (1)

where leftr and rightr are numbers, called the left index and the right index,
respectively, L and L′ are bond types in L, and string αr represents the finite
multiset of objects that will be transferred.

The semantics of the rule R, when applied on a collection C of bonds, is as
follows. We use I to denote the set of all the left and right indices that appear
in the atomic rules r in R. Without loss of generality, let I = {1, · · · , m} for
some m.

For each i ∈ I, let wi be a distinct bond in the collection. We say that the rule
R modifies 〈w1, · · · , wm〉 into 〈w′

1, · · · , w′
m〉, when all of the following conditions

are satisfied:

- For each appearance (L)i, with L ∈ L and i ∈ I, in the rule R, wi must be
of bond type L.

- For each i ∈ I, we use LEFTi to denote the set of all atomic rules r in R
such that the left index leftr of r equals i. Then, each wi must contain all

Bond Computing Systems 231

the objects that ought to be transferred, i.e., the multiset union of multisets
αr in each atomic rule r that is in LEFTi.

- The bonds 〈w′
1, · · · , w′

m〉 are the result of 〈w1, · · · , wm〉 after, in parallel for
all atomic rules r in R, transferring objects in multiset αr from bond wleftr

to
bond wrightr

. That is, 〈w′
1, · · · , w′

m〉 are the outcome of the following pseudo-
code:

For each r ∈ R
wleftr

:= wleftr
− αr; // ‘−’ denotes multiset difference

For each r ∈ R
wrightr

:= wrightr
+ αr; // ‘+’ denotes multiset union

For each i ∈ I
w′

i := wi.

When there are some 〈w1, · · · , wm〉 in the collection C such that R modifies
〈w1, · · · , wm〉 into some 〈w′

1, · · · , w′
m〉, we say that R is enabled and, furthermore,

R modifies the collection C into collection C′, written

C R→C′

where C′ is the result of replacing w1, · · · , wm in C with w′
1, · · · , w′

m, respectively.

Example 2. Let bond collection C be the one defined in Example 1. That is,
C is the multiset of bonds {p, p, h, d, d, p2h, ph, p4cd, p8cd2}. Recall that p, h, c
and d represent patient, helicopter, clinic and doctor, respectively. Consider a
rule, called TRANSFER CALL-IN, that describes the scenario that a helicopter
transfers a patient to a clinic that already houses 8 patients but with only two
doctors on duty. In parallel with the transferring, an on-call doctor (who is not
bonded with a clinic yet) is called in and bonded with the clinic to treat the
patient. The rule TRANSFER CALL-IN consists of the following two atomic
rules:

TRANSFER: (p∗h)1
p→ (p8cd2)2

CALL-IN: (d)3
d→ (p8cd2)2

In order to describe how the rule is fired, by definition, we (nondeterministically)
choose three bonds from the collection C: 〈w1, w2, w3〉 = 〈p2h, p8cd2, d〉. Notice
that bond w1 corresponds to the term (p∗h)1 in the atomic rule TRANSFER;
bond w2 corresponds to the term (p8cd2)2 in the atomic rule TRANSFER and
in the atomic rule CALL-IN; and bond w3 corresponds to the term (d)3 in the
atomic rule CALL-IN. (Note that the subscript i of wi equals the subscript of
the term correspondent to the bond wi.) One can easily check that these three
bonds are respectively of the bond types specified in the terms. Firing the rule
on the chosen 〈w1, w2, w3〉 will make a p transferred from bond w1 to w2 and
make a d transferred from bond w3 to w2, in parallel. That is, 〈w1, w2, w3〉
is modified into 〈w′

1, w
′
2, w

′
3〉 = 〈ph, p9cd3, λ〉. Replacing the previously chosen

〈w1, w2, w3〉 in C with the 〈w′
1, w

′
2, w

′
3〉, we get C′ = {p, p, h, d, ph, ph, p4cd, p9cd3}

(again, we omit the empty bonds λ). Hence, we have C R→C′ (where R is the rule

232 L. Yang, Z. Dang, and O.H. Ibarra

TRANSFER CALL-IN) as depicted in Figure 1. Notice also that, depending on
the choice of 〈w1, w2, w3〉, the resulting collection C′ may not be unique; e.g.,
one can choose 〈w1, w2, w3〉 = 〈ph, p8cd2, d〉 from C and, subsequently, C′ =
{p, p, h, d, p2h, h, p4cd, p9cd3}. Finally, we shall point out that if we change the
rule TRANSFER CALL-IN into the following form:

TRANSFER: (p∗h)1
ppp→ (p8cd2)2

CALL-IN: (d)3
d→ (p8cd2)2

then this rule is not enabled under the configuration C. (Since, now, the rule,
when fired, must transfer 3 patients from a bond of type p∗h but we do not have
such type of bond in C which contains at least 3 patients to transfer) �

p p
h

d d

p2h

ph
p4c d

p8c d2

T RANSFER_CALL-IN

p p
h

d

ph

ph
p4c d

p9c d3

Fig. 1. Collection C (the left hand side) is modified into collection C′ (the right hand
side) after firing the rule TRANSFER CALL-IN described in Example 2. The dotted
arrows in the left hand side of this figure indicate the bonds on which the two atomic
rules TRANSFER and CALL-IN (in the rule TRANSFER CALL-IN) fire upon in
parallel.

A bond type L is regular if L is a regular language (i.e., a regular language in
a∗
1...a

∗
k). In particular, when L is (regular expression) a, we say that L is the

a-free bond type. The object (a) in the a-free bond is called a free object.
A bond computing system (BCS) M is a machine specified by the following

tuple:

〈Σ,L,R, θ〉, (2)

where L is a finite set of bond types, R is a finite set of rules, and θ is the initial
constraint. An initial collection of M is one in which a nonempty bond must be
of a-free bond type for some a. That is, every object is a free object in an initial
collection. Additionally, the initial collection must satisfy the initial constraint
θ which is specified by a mapping θ : Σ → N ∪ {∗}. That is, for each a ∈ Σ
with θ(a) "= ∗, the initial collection must contain exactly θ(a) number of free
a-objects (while for a with θ(a) = ∗, the number of free a-objects in the initial

Bond Computing Systems 233

collection could be any number). Hence, the initial constraint θ is to specify the
symbols in Σ whose initial multiplicities are fixed. For two collections C and C′,
we say that C can reach C′, written

C �M C′

if, for some n,

C0
R1→C1 · · ·

Rn→Cn

where C = C0, C1, · · · , Cn = C′ are collections, and R1, · · · , Rn are rules in R.
In this paper, we focus on regular bond computing system (RBCS) M where

each L ∈ L is regular. As we mentioned earlier, a BCS M can be thought of a
design model of a pervasive software system. An important issue in developing
such a design, in particular for safety-critical and/or mission critical systems, is
to make sure that the software system does not have some undesired behaviors.
This issue is called (automatic) verification, which seeks an (automatic) way to
verify that a system satisfies a given property.

Example 3. Let M be a regular bond computing system with Σ = {p, h, c, d} and
L specified in Example 1. The initial constraint is defined as follows: θ(p) = ∗,
θ(h) = 3, θ(c) = 2, and θ(d) = 5. The rules in R are in below:

- R1: (p)1
p→ (p∗h)2;

- R2 consisting of two atomic rules:

r1: (p∗h)1
p→ (p8cd2)2;

r2: (d)3
d→ (p8cd2)2;

- R3: (p∗h)1
p→ (p≤8c(d + dd))2;

- R4: (p∗h)1
p→ (p>8cd>2)2;

- R5 consisting of two atomic rules:

r1: (p8cd3)1
p→ (λ)2;

r2: (p8cd3)1
d→ (λ)3;

- R6: (p≤8c(d + dd))1
p→ (λ)2;

- R7: (p>8cd>2)1
p→ (λ)2;

- R8: (d)1
d→ (c)2;

- R9: (d)1
d→ (cd)2.

In above, R1 indicates that a patient boards a helicopter. R2, R3 and R4

indicate that a patient is transferred from a helicopter to a clinic, where, in par-
ticular, R2 means that the clinic does not have enough doctors, so an additional
doctor is called in. R5, R6 and R7 indicate that a patient leaves the clinic (after
being cured). In particular, R5 means that, when the clinic does not have many
patients, a doctor can be off-duty. R8 and R9 are to fill a clinic (without patient)
with one or two doctors. �

234 L. Yang, Z. Dang, and O.H. Ibarra

A simplest (and, probably, the most important) class of verification queries con-
cern reachability, which has various forms. A collection-to-collection reachability
problem is to decide whether, given two collections, one can reach the other in
a given BCS:

Given: an RBCS M and two collections C and C′ (where C is initial),
Question: C �M C′ ?

Observe that, since the total number of objects in M does not change in any
run of M from the initial collection C, the collection-to-collection reachability
problem is clearly decidable in time polynomial in the size of M and the size
of C (the total number of objects in C, where the number is unary). Just use
“breadth-first” to find all reachable collections.

Theorem 1. The collection-to-collection reachability problem for regular bond
computing systems is decidable in polynomial time.

One can also generalize Theorem 1 to the generalized collection-to-collection
reachability problem, where the initial collection is still given but the target
collection is not:

Given: an RBCS M , a regular bound type L, and an initial collection C,
Question: is there a collection C′ such that C �M C′ and C′ contains a bond

of type L ?

Theorem 2. The generalized collection-to-collection reachability problem for
regular bond computing systems is decidable in polynomial time.

Remark 1. It is easily verified that the two theorems above hold even when
the bond types are not regular, but are in PTIME; i.e., the class of languages
accepted by deterministic Turing machines in polynomial time.

In the collection-to-collection reachability problems studied in Theorems 1 and
2, M starts with a given initial collection. Therefore, the decision algorithms
for the problems essentially concern testing: each time, the decision algorithms
only verify M under a concrete initial collection. It is desirable to verify that
the system M has the undesired behavior for some initial collections. That is,
considering the negation of the problem, we would like to know whether the
design is correct under every possible (implementation) instance.

To this end, we will study the following bond-type reachability problem, where
the initial collection is not given:

Given: an RBCS M and a regular bound type L,
Question: are there two collections C and C′ such that C is initial, C �M C′,

and C′ contains a bond of type L ?

The answer of the above question is meaningful in many aspects. One is that
it can help decide whether a system is well designed. Suppose the bond type L
is something undesired which we do not want to have in a system. If we have
C �M C′, and C′ contains a nonempty bond of type L, we say that the system
is not well designed.

Bond Computing Systems 235

Example 4. Consider the bond computing system M in example 3 and with
C = {p, p, h, d, d, p2h, ph, p4cd, p8cd2} reached at some moment. Suppose that
L = p>8cd≤2 is an “undesired” bond type (e.g., a clinic with too many patients
but with too few doctors). First, we choose 〈w1, w2〉 = 〈p, p2h〉 from C. After
applying R1, 〈w′

1, w
′
2〉 = 〈λ, p3h〉 and we get C′ = {p, h, d, d, p3h, ph, p4cd, p8cd2},

or, CR1→C′. Next, we pick 〈w1, w2〉 = 〈p3h, p8cd2〉 from C′, after applying R3,
〈w′

1, w
′
2〉 = 〈p2h, p9cd2〉, we get C′′ = {p, h, d, d, p2h, ph, p4cd, p9cd2}, or, C′R3→C′′.

Therefore, C �M C′′, and in C′′ there is a bond p9cd2, which is a bond of the
undesired bond type L. Therefore, M is not designed as expected. �

In the following sections, we are going to investigate the computing power of
regular bond computing systems. Our results show that the bond-type reacha-
bility problem is undecidable in general. However, there are interesting special
cases where the problem becomes decidable.

3 Undecidability of Bond-Type Reachability

To show that the bond-type reachability problem is undecidable, we first estab-
lish that the computing power of RBCS (regular bond computing systems) lies
between LBA (linearly bounded automata) and LBC (linearly bounded multi-
counter machines). To proceed further, some definitions are needed.

An LBA A is a Turing machine where the R/W head never moves beyond the
original input region. For the purpose of this paper, we require that the LBA
works on bounded input; i.e., input in the form of b∗1 · · · b∗m. As usual, we use
Lang(A) to denote the set of input words that are accepted by A.

Let M be an RBCS. Recall that, in M , the initial constraint θ is used to
specify the case when some symbols in Σ whose initial multiplicities are fixed
(and specified by θ). Without loss of generality, we use a1, · · · , al (for some
l ≤ k) to denote the remaining symbols and, by ignoring those “fixed symbols”,
we simply use ai1

1 · · · ail

l to denote an initial collection C of M where each object
is a free object. Let L be a given regular bond type. We say that the initial
collection is L-accepted by M if there is some collection C′ that contains a bond
of type L such that C �M C′. As usual, we use Lang(M, L) to denote the set
of all words ai1

1 · · ·a
il

l that are L-accepted by M . Notice that the bond type
reachability problem is equivalent to the emptiness problem for Lang(M, L).

We first observe that, since the total “size” (i.e., the total number of objects in
the system) of a collection always equals the size of the initial collection during
a run of M , an RBCS M can be simulated by an LBA.

Theorem 3. For any given regular bond computing system M and a regu-
lar bond type L, one can construct a linearly bounded automaton A such that
Lang(M, L) = Lang(A).

Remark 2. Clearly, the theorem above holds, even when the bond types are not
regular, but are context-sensitive languages (= languages accepted by LBAs).

236 L. Yang, Z. Dang, and O.H. Ibarra

Remark 3. Actually, LBAs are strictly stronger than RBCS (since languages
accepted by RBCS are upper-closed (i.e., if ai1

1 · · ·aik

k is accepted then so is

a
i′1
1 · · ·a

i′k
k , for any ij ≤ i′j) and this is not true for LBAs).

A multicounter machine is a (nondeterministic) program P equipped with a
number of nonnegative integer counters X1, · · · , Xn (for some n). Each counter
can be incremented by one, decremented by one, and tested for 0, along with
state transitions. That is, P consists of a finite number of instructions, each of
which is in one of the following three forms:

s : X + +, goto s′;
s : X −−, goto s′;
s : X == 0?, goto s′;

where X is a counter. Initially, the counters start with 0. During a run of the
machine P , it crashes when a counter falls below 0. Notice that, in our instruction
set, there is no instruction in the form of s : X > 0?, goto s′. In fact, this
instruction can be simulated by the following two instructions: s : X−−, goto s′′

and s′′ : X++, goto s′, where s′′ is a new state. The machine halts when it enters
a designated accepting state. It is well known that multicounter machines are
Turing-complete (even when there are two counters). We say that a nonnegative
integer tuple (x1, · · · , xn) is accepted by P if P has an accepting run during
which the maximal value of counter Xi is bounded by xi for each i. One can
treat the tuple (x1, · · · , xn) as an (input) word (where each number is unary). In
this way, we use language Lang(P) to denote the set of all nonnegative integer
tuples accepted by P . Notice that, in here, counter values in the multicounter
machine can not exceed the values given in the input. Therefore, we call such P
as a linearly bounded multicounter machine (LBC).

Our next result shows that an LBC P can be simulated by an RBCS M . A
rule that contains only one atomic rule is called simple. We call M simple if every
rule in M is simple. In a collection C, a bond is trivial if it is either empty or
of a free bond type; that is, the bond contains at most one (free) object. When
there are at most m nontrivial bonds in any reachable collection during any run
of M (starting from any initial collection), we simply say that M contains m
nontrivial bonds. In fact, the result holds even when M is simple and contains
2 nontrivial bonds.

Theorem 4. For any given linearly bounded multicounter machine P , one can
construct an RBCS M , which contains at most 2 nontrivial bonds, and a regular
bond type L such that Lang(P) = Lang(M, L).

An atomic rule in (1) is single if there is exactly one object that will be trans-
ferred; i.e., the size of αr is 1. A rule that contains only single atomic rules is also
called single. An RBCS M is single if it contains only single rules. Notice that
every simple rule can be rewritten into a single rule. For instance, a simple rule
like (a+b∗)1

abb→ (a∗c+)2 is equivalent to the single rule consisting of the following
three atomic single rules:

Bond Computing Systems 237

(a+b∗)1
a→ (a∗c+)2;

(a+b∗)1
b→ (a∗c+)2;

(a+b∗)1
b→ (a∗c+)2.

Therefore, a simple RBCS can be simulated by a single RBCS. Following the
same idea, one can also observe that an RBCS can be simulated by a single
RBCS. Hence, combining Theorems 3 (and Remark 3) and Theorem 4, we have
the following diagram summarizing the computing power, in terms of language
acceptance, of regular bond computing systems (from higher to lower):

LBA > RBCS = single RBCS ≥ simple RBCS ≥ LBC.

We currently do not know whether some of the ≥’s are strict.
Notice that the emptiness problem for LBC (which is equivalent to the halting

problem for multicounter machines) is known undecidable. According to Theo-
rem 4, for (single) RBCS, the emptiness problem (i.e., Lang(M, L) = ∅? for a
given RBCS M and regular bond type L) is undecidable as well. Hence,

Theorem 5. The bond-type reachability problem for regular bond computing
systems is undecidable. The undecidability remains even when the systems are
simple.

We now generalize the notion of L-acceptance for an RBCS M . Let L1, · · · , Ln,
Q1, · · · , Qm (for some n and m) be bond types.

Similar to L-acceptance defined earlier, we say that an initial collection C
is (L1, · · · , Ln; Q1, · · · , Qm)-accepted by M if there is some collection C′ with
C �M C′ such that C′ contains a bond of type Li for each i and does not
contain a bond of type Qj for each j. As in the definition of Lang(M, L), we use
Lang(M, L1, · · · , Ln; Q1, · · · , Qm) to denote the set of all words ai1

1 · · · a
il

l that
are (L1, · · · , Ln; Q1, · · · , Qm)-accepted by M .

Now, Theorem 4 can be generalized to show that an RBCS can simulate a
multihead two-way nondeterministic finite automaton (multihead 2NFA).

A multihead 2NFA M is a nondeterministic finite automaton with k two-way
read-only input heads (for some k). An input string x ∈ a∗

1...a
∗
n (the ai’s are

distinct symbols) is accepted by M if, when given x (the $’s are the left and
right end markers) with M in the initial state and all k heads on the left end
marker, M eventually halts in an accepting state with all heads on the right end
marker. The language accepted by M is denoted by Lang(M).

Now let P be an LBC with a set C of k counters. Let n ≥ 1. Partition C into
n sets C1, ..., Cn of counters, where each Ci has ki counters, and k = k1 + ...+kn.
We say that a nonnegative integer tuple (x1, ..., xn) is accepted by P if P has
an accepting run during which each of the ki counters in Ci is bounded by (and
achieve) the value xi. Define Lang(P) to be the set of all n-tuples (x1, ..., xn)
accepted by P . Note that the definition given earlier can be considered as the
current definition with k1 = ... = kn = 1 but without requiring the bound xi

being achieved.

238 L. Yang, Z. Dang, and O.H. Ibarra

Slightly modifying the proof of Theorem 4 (using Q1, · · · , Qm to specify that
free bond types all disappear at the end of computation), we have

Theorem 6. For any given linearly bounded multicounter machine P ,
one can construct an RBCS M , which contains at most 2 nontrivial
bonds, and regular bond types L1, · · · , Ln, Q1, · · · , Qm such that Lang(P) =
Lang(M, L1, · · · , Ln, Q1, · · · , Qm).

Actually, LBC and multihead 2NFA are equivalent in the following sense:

Lemma 1. A set O ⊆ Nn is accepted by an LBC P if and only if the language
{ax1

1 ax2
2 ...axn

n | (x1, ..., xk) ∈ O} is accepted by a multihead 2NFA.

From Theorem 6, we have the following corollary:

Corollary 1. For any given multhead 2NFA M , one can con-
struct an RBCS M ′, which contains at most 2 nontrivial bonds,
and regular bond types L1, · · · , Ln, Q1, · · · , Qm such that Lang(M) =
Lang(M ′, L1, · · · , Ln, Q1, · · · , Qm).

Since multihead 2NFAs are equivalent to log n space-bounded nondeterministic
Turing machines (NTMs), we also obtain the following result:

Corollary 2. For any given log n space-bounded NTM M , one can
construct an RBCS M ′, which contains at most 2 nontrivial bonds,
and regular bond types L1, · · · , Ln, Q1, · · · , Qm such that Lang(M) =
Lang(M ′, L1, · · · , Ln, Q1, · · · , Qm).

Next, we show that an RBCS can simulate the computation of a nondeterministic
linear-bounded automaton (LBA). Let M be an LBA with input alphabet Σ =
{1, 2, ..., k}. We represent a string x = dn...d0 (each di in {1, ..., k}) as an integer
N(x) = dnkn+dn−1k

n−1+...+d1k
1+d0k

0. Let o be a symbol. For a language L ⊆
Σ∗, define Unary(L) = {oN(x) | x ∈ L}. In [11], it was shown that given an LBA
M , one can construct a multihead 2NFA M ′ such Lang(M ′) = Unary(Lang(M)).
Hence, we have:

Corollary 3. For any given LBA M , one can construct an RBCS M ′, which con-
tains at most 2 nontrivial bonds, and regular bond types L1, · · · , Ln, Q1, · · · , Qm

such that Lang(M) = Lang(M ′, L1, · · · , Ln, Q1, · · · , Qm).

4 Restricted Bond Computing Systems

According to Theorem 5, the bond-type reachability problem is undecidable
for regular bond computing systems. In this section, we are going to investigate
further restrictions that can be applied such that the problem becomes decidable.

An n-dimensional vector addition system with states (VASS) G is a 5-tuple

〈V, p0, pf , S, δ〉

Bond Computing Systems 239

where V is a finite set of addition vectors in Zn, S is a finite set of states,
δ ⊆ S × S × V is the transition relation, and p0, pf ∈ S are the initial state and
the final state, respectively. Elements (p, q, v) of δ are called transitions and are
usually written as p → (q, v). A configuration of a VASS is a pair (p, u) where
p ∈ S and u ∈ Nn. The transition p → (q, v) can be applied to the configuration
(p, u) and yields the configuration (q, u + v), provided that u + v ≥ 0 (in this
case, we write (p, u) → (q, u + v)). For vectors x and y in Nn, we say that x can
reach y, written x �G y, if for some j,

(p0, x) → (p1, x + v1) → · · · → (pj , x + v1 + ... + vj)

where p0 is the initial state, pj is the final state, y = x + v1 + ... + vj , and each
vi ∈ V . It is well-known that Petri nets and VASS are equivalent.

Let B be a constant and M be an RBCS. We say that an RBCS M is B-
bounded if, in any reachable collection of M (starting from any initial collection),
there is no bond containing more than B objects. Essentially, we restrict the size
of each bond in M while we do not restrict the number of the nonempty bonds.
Notice that there are at most t (depending only on B and k – the size of the
alphabet Σ) distinct words (i.e., bonds)

w0, w1, · · · , wt,

where each wi is with size at most B and w0 is the empty word. Accordingly,
we use Lwi to denote the bond type {wi}. For a collection C of the B-bounded
M , we use #(wi) to denote the multiplicity of type Lwi (nonempty) bonds in
C, with i ≥ 1. In this way, the C can then be uniquely represented by a vector
#(C) defined as

(#(w1), · · · , #(wt)) ∈ Nt.

Accordingly, the reachability relation C �M C′ for the B-bounded M can then
be represented by #(C) �M #(C′); i.e., �M⊆ Nt ×Nt.

Our definition of B-boundedness for RBCS M is effective. That is, for any
B-bounded RBCS M , one can construct an equivalent B-bounded RBCS M ′

such that the nonempty bond types in M ′ are Lw1 , · · · , Lwt and �M=�M ′ .
The proof is straightforward. So, without loss of generality, we further assume
that the bond types in a B-bounded RBCS M are given as Lw1 , · · · , Lwt .

Theorem 7. B-bounded regular bond computing systems can be simulated by
vector addition systems with states. That is, for a B-bounded RBCS M , one can
construct a VASS G such that �M=�G.

A subset S of Nn is a linear set if there exist vectors v0, v1, ..., vt in Nn such
that S = {v | v = v0 + a1v1 + · · · + atvt, ∀1 ≤ i ≤ t, ai ∈ N}. The vectors
v0 (the constant vector) and v1, ..., vt (the periods) are called generators . A set
S is semilinear if it is a finite union of linear sets. The semilinear reachability
problem for VASS is as follows: Given a VASS G and semilinear sets P and Q,
are there vectors u ∈ P and v ∈ Q such that u �G v? The problem can be
easily shown decidable, by making a reduction to the classic (vector to vector)
reachability problem (which is known decidable) for VASS.

240 L. Yang, Z. Dang, and O.H. Ibarra

Lemma 2. The semilinear reachability problem for VASS is decidable.

Using Lemma 2 and Theorem 7, it is straightforward to show

Corollary 4. The bond-type reachability problem for B-bounded RBCS is de-
cidable.

Notice that, if we remove the condition of B-boundedness from Corollary 4, the
bond-type reachability problem is undecidable, as shown in Theorem 5. The
undecidability remains even when simple RBCS are considered. An interesting
case now is whether the problem becomes decidable when an RBCS M is both
single and simple. Or, for a more general case, each rule in M contains only one
atomic rule and transfers exactly one type of objects(i.e., l a-objects for some
l); we call such M as a 1-transfer RBCS.

The following theorem shows that the regular bond-type reachability problem
is decidable for 1-transfer RBCS. Notice that the problem is undecidable if the
1-transfer condition is removed, as shown in the construction of Theorem 4. The
key idea used in the following proof is to show that under a proper symbolic
representation of collections, the backward reachability calculation converges.

Theorem 8. The regular bond-type reachability problem for 1-transfer RBCS is
decidable.

5 Conclusion

In this paper, we introduced Bond Computing Systems (BCS) to model high-
level dynamics of pervasive computing systems. The model is a variation of P
systems introduced by Gheorghe Paun and, hence, is biologically inspired. We
focused on regular bond computing systems (RBCS), where bond types are regu-
lar, and study their computation power and verification problems. Among other
results, we showed that the computing power of RBCS lies between LBA (lin-
early bounded automata) and LBC (a form of bounded multicounter machines)
and hence, the bond-type reachability problem (given an RBCS, whether there is
some initial collection that can reach some collection containing a bond of a given
type) is undecidable. We also study some restricted models (i.e., B-boundedness
and 1-transfer) of RBCS where the reachability problem becomes decidable.

Notice that our model of BCS is not universal. Clearly, if one generalizes the
model by allowing rules that can create an object from none, then the model
becomes Turing-complete (from the proof of Theorem 4). In this paper, we only
focus on regular BCS. In the future, we will further investigate “nonregular”
BCS where bond types involve linear constraints. We are currently implement-
ing a design language based on BCS and study an automatic procedure that
synthesizing a pervasive application instance running over a specific network
from a BCS specification.

Bond Computing Systems 241

References

1. Cook, D.: Health monitoring and assistance to support aging in place. Journal of
Universal Computer Science 12(1), 15–29 (2006)

2. Dang, Z., Ibarra, O.H.: On P systems operating in sequential mode. In: Prepro-
ceedings of the 6th Workshop on Descriptional Complexity of Formal Systems
(DCFS’04), 2004. Report No. 619, Univ. of Western Ontario, London, Canada, pp.
164–177 (2004)

3. Ibarra, O.H., Yen, H., Dang, Z.: The power of maximal parallelism in p systems.
In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
212–224. Springer, Heidelberg (2004)

4. Kumar, M., Shirazi, B., Das, S.K., Sung, B.Y., Levine, D., Singhal, M.: PICO: a
middleware framework for pervasive computing. Pervasive Computing, IEEE 2(3),
72–79 (2003)

5. Lamport, L., Lynch, N.: Distributed computing: models and methods. Handbook
of theoretical computer science (vol. B): formal models and semantics, 1157–1199
(1991)

6. Martin-Vide, C., Paun, Gh., Pazos, J., Rodriguez-Paton, A.: Tissue P systems.
Theoretical Computer Science 296(2), 295–326 (2003)

7. Park, S.H., Won, S.H., Lee, J.B., Kim, S.W.: Smart home-digitally engineered
domestic life. Personal and Ubiquitous Computing 7(3-4), 189–196 (2003)

8. Paun, Gh.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

9. Paun, Gh.: Introduction to membrane computing. See P Systems Web Page at
(2004), http://psystems.disco.unimib.it

10. Roman, G.-C., Julien, C., Payton, J.: A formal treatment of context-awareness.
In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp.
12–36. Springer, Heidelberg (2004)

11. Savitch, W.J.: A note on multihead automata and context-sensitive languages.
Acta Informatica 2(3), 249–252 (1973)

12. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Pro-
ceedings of Workshop on Mobile Computing Systems and Applications, pp. 85–90.
IEEE Computer Society Press, Santa Cruz, CA (1994)

13. Sung, B.Y., Kumar, M., Shirazi, B., Kalasapur, S.: A formal framework for com-
munity computing. Technical report (2003)

14. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75
(1991)

15. Zimmer, P.: A calculus for context-awareness. BRICS Research Series (2005)

http://psystems.disco.unimib.it

Author Index

Agudelo, Juan C. 29
Ahmad, Jamil 106
Akl, Selim G. 127
Aono, Masashi 41
Arbib, Michael A. 1
Arulanandham, Joshua J. 55

Bashir, Sajid 115

Carnielli, Walter 29
Costa, José Félix 137
Crutchfield, James P. 214

Dang, Zhe 226

Elias, Yuval 2

Fernandez, José M. 2
Freund, Rudolf 62

Goldfarb, Lev 77

Hara, Masahiko 41

Ibarra, Oscar H. 226
Ishdorj, Tseren-Onolt 91

Kari, Lila 27
Khalid, Seema 106
Khan, Adnan 115

Mor, Tal 2

Naeem, Muhammad 115
Nagy, Naya 127

Ospina, Juan 199

Pacheco, José 137
Păun, Gheorghe 62
Pérez-Jiménez, Mario J. 62
Petre, Ion 91
Prost, Frédéric 150

Rabanal, Pablo 163
Rodŕıguez, Ismael 163
Rubio, Fernando 163

Schöning, Uwe 178
Shah, Syed Ismail 106, 115
Sheikh, Asrar 115
Szeto, K.Y. 188

Vélez, Mario 199
Vertegaal, Roel 28

Weinstein, Yossi 2
Wiesner, Karoline 214

Yang, Linmin 226

	Title
	Preface
	Table of Contents
	Optimal Algorithmic Cooling of Spins
	Introduction
	Spin-Temperature and NMR Sensitivity
	Effective Cooling of Spins

	Algorithmic Cooling
	Block-Wise Algorithmic Cooling
	Practicable Algorithmic Cooling (PAC)

	Exhaustive Cooling Algorithms
	Exhaustive Cooling on Three Spins
	The Fibonacci Algorithm
	The Tribonacci Algorithm
	The k-Bonacci Algorithm
	The All-Bonacci Algorithm
	Density Matrices of the Cooled Spin Systems

	Optimal Algorithmic Cooling
	Lower Limits of the PPA and All-Bonacci
	Upper Limits on Algorithmic Cooling

	Algorithmic Cooling and NMR Quantum Computing
	Discussion
	References

	Nanocomputing by Self-assembly
	Organic User Interfaces (Oui!): Designing Computers in Any Way Shape or Form
	Unconventional Models of Computation Through Non-standard Logic Circuits
	Introduction
	Polynomial Ring Calculus
	Generalizing Boolean Circuits Via Polynomial Ring Calculus
	Potentialities with Respect to Computability
	Potentialities with Respect to Computational Complexity

	Final Comments
	References

	Amoeba-Based Nonequilibrium Neurocomputer Utilizing Fluctuations and Instability
	Introduction
	Fluctuations and Instability
	Nanotechnology for Next-Generation Device
	Self-organization in Nonequilibrium Media

	Materials and Methods
	True Slime Mold
	Neural Network Implementation
	Embodiment of Problem Solving

	Results
	Problem Solving Process
	Searching Ability of Multiple Solutions
	Statistical Results

	Discussions
	Biological Implication of Spontaneous Destabilization
	Mechanism of Emergence of New Branch
	Origin of Spontaneous Destabilization
	Applications

	Conclusions
	References

	Unconventional “Stateless” Turing–Like Machines
	Turing Machines
	EnterJTM
	JTMs Can Simulate TMs
	Conclusion
	References

	Polarizationless P Systems with Active Membranes Working in the Minimally Parallel Mode
	Introduction
	Prerequisites
	P Systems with Active Membranes
	Computational Completeness
	SolvingSAT by Polarizationless P Systems
	References

	On One Unconventional Framework for Computation
	Introduction
	On a Proper Approach to the Concept of Structural Object Representation
	The Price of Relying on Conventional Discrete Representations
	A Brief Sketch of the ETS Formalism
	Primitive Transformations
	Structs
	Struct Assembly
	Level 0 Classes
	Level 1 Structs
	Higher Level Classes

	Some Initial Computational Questions Arising Within the ETS Formalism
	Conclusion
	References

	Computing Through Gene Assembly
	Introduction
	Preliminaries
	The Contextual Intramolecular Operations
	Computational Efficiency and Universality
	FinalRemarks
	References

	Learning Vector Quantization Network for PAPR Reduction in Orthogonal Frequency Division Multiplexing Systems
	Introduction
	Selected Mapping Technique for PAPR Reduction
	Learning Vector Quantization
	LVQ Algorithm

	Proposed Model
	Simulation Results
	Conclusion
	Reference

	Binary Ant Colony Algorithm for Symbol Detection in a Spatial Multiplexing System
	Introduction
	MIMO Channel Model
	Problem Formulation
	Existing MIMO Detectors
	Linear Detectors
	Non- linear Detectors

	ACO for Spatial Multiplexing System
	Ant Colony Optimization (ACO)
	Binary Ant System (BAS)
	BA-MIMO Detection Algorithm

	Performance Analysis of BA-MIMO Detection Technique
	BER Versus SNR Performance
	Computational Complexity Comparison
	Performance-Complexity Trade-Off

	Conclusions
	References

	Quantum Authenticated Key Distribution
	Introduction
	Entangled Qubits
	Entanglement Caused by Phase Incompatibility
	Measurement

	The Algorithm
	Conclusion
	References

	The Abstract Immune System Algorithm
	Introduction
	The Biological Model
	The Algorithm
	Problems and Results
	The Probabilistic Computational Model
	Examples
	Conclusions and Future Work
	References

	Taming Non-compositionality Using New Binders
	Introduction
	Global State Calculus
	λGS Ideas
	λGS Definition
	λGS Properties

	λGS for Quantum Computing
	\lamglostaquant Definition
	\lamglostaquant Typing System

	Conclusion
	References

	Using River Formation Dynamics to Design Heuristic Algorithms
	Introduction
	General Method
	Basic Algorithm
	Basic Improvements

	Applying the Method to TSP
	TSP Implementation and Results
	Conclusions and Future Work
	References

	Principles of Stochastic Local Search
	Introduction
	Modelling Local Search Algorithms
	Heuristic Information and Markov Chain Analysis
	Restarts
	References

	Spatial and Temporal Resource Allocation for Adaptive Parallel Genetic Algorithm
	Introduction
	Mutation Matrix
	Temporal Allocation of Resource
	Spatial Allocation of Resource
	The Zero/One Knapsack Problem
	Discussion
	References

	Gravitational Topological Quantum Computation
	Introduction
	AJL Algorithm in Anyonic TQC
	Gravitational Topological Quantum Computation
	Applications of GTQC in Computer Science
	Conclusions
	References

	Computation in Sofic Quantum Dynamical Systems
	Introduction
	Quantum Finite-State Generators
	Process Languages
	Alternative Quantum Finite-State Machines

	Information Processing in a Spin-1 Dynamical System
	Determinism
	SoficSystems
	Information-Theoretic Analysis
	Conclusion
	References

	Bond Computing Systems: A Biologically Inspired and High-Level Dynamics Model for Pervasive Computing
	Introduction
	Definitions
	Undecidability of Bond-Type Reachability
	Restricted Bond Computing Systems
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

